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PREFACE.

The present work is intended as a sequel to our Elementary

Algebra for Schools. The first few chapters are devoted to

a fuller discussion of Ratio, Proportion, Variation, and the

Progressions, which in the former work were treated in an

elementary manner ; and we have here introduced theorems

and examples which are unsuitable for a first course of

reading.

From this point the work covers ground for the most

part new to the student, and enters upon subjects of special

importance : these we have endeavoured to treat minutely

and thoroughly, discussing both bookwork and examples

witli that fulness which we have always found necessary in

our experience as teachers.

It has been our aim to discuss all the essential parts

as completely as possible within the limits of a single

volume, but in a few of the later chapters it has been im-

possible to find room for more than an introductory sketch
;

in all such cases our object has been to map out a suitable

first course of reading, referring the student to special treatises

for fuller information.

In the chapter on Permutations and Combinations we

are much indebted to the Rev. W. A. Whitworth for per-

mission to make use of some of the proofs given in his

Choice and Chance. For many years we have used these

proofs in our own teaching, and we are convinced that this



vi PREFACE.

part of Algebra is made far more intelligible to the beginner

by a system of common sense reasoning from first principles

than by the proofs usually found in algebraical text-books.

The discussion of Convergency and Divergency of Series

always presents great difficulty to the student on his first

reading. The inherent difficulties of the subject are no

doubt considerable, and these are increased by the place it

has ordinarily occupied, and by the somewhat inadequate

treatment it has hitherto received. Accordingly we have

placed this section somewhat later than is usual; much

thought has been bestowed on its general arrangement, and

on the selection of suitable examples to illustrate the text

;

and we have endeavoured to make it more interesting and

intelligible by previously introducing a short chapter on

Limiting Values and Vanishing Fractions.

In the chapter on Summation of Series we have laid

much stress on the " Method of Differences" and its wide and

important applications. The basis of this method is a well-

known formula in the Calculus of Finite Differences, which in

the absence of a purely algebraical proof can hardly be con-

sidered admissible in a treatise on Algebra. The proof of the

Finite Difference formula which we have given in Arts. 395,

396, we believe to be new and original, and the development

of the Difference Method from this formula has enabled us to

introduce many interesting types of series which have hitherto

been relegated to a much later stage in the student's reading.

We have received able and material assistance in the

chapter on Probability from the Rev. T. C. Simmons of

Christ's College, Brecon, and our warmest thanks are due

to him, both for his aid in criticising and improving the

text, and for placing at our disposal several interesting and

original problems.

It is hardly possible to read any modern treatise on

Analytical Conies or Solid Geometry without some know-
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ledge of Determinants and their applications. We have
therefore given a brief elementary discussion of Determi-

nants in Chapter xxxm., in the hope that it may provide

the student with a useful introductory course, and prepare

him for a more complete study of the subject.

The last chapter contains all the most useful propositions

in the Theory of Equations suitable for a first reading. The
Theory of Equations follows so naturally on the study of

Algebra that no apology is needed for here introducing pro-

positions which usually find place in a separate treatise. In

fact, a considerable part of Chapter xxxv. may be read

with advantage at a much earlier stage, and may conveniently

be studied before some of the harder sections of previous

chapters.

It will be found that each chapter is as nearly as possible

complete in itself, so that the order of their succession can

be varied at the discretion of the teacher ; but it is recom-

* mended that all sections marked with an asterisk should be

reserved for a second reading.

In enumerating the sources from which we have derived

assistance in the preparation of this work, there is one book

to which it is difficult to say how far we are indebted.

Todhunter's Algebra for Schools and Colleges has been the

recognised English text-book for so long that it is hardly

possible that any one writing a text-book on Algebra at the

present day should not be largely influenced by it. At the

same time, though for many years Todhunter's Algebra has

been in constant use among our pupils, we have rarely

adopted the order and arrangement there laid down; in

many chapters we have found it expedient to make frequent

use of alternative proofs; and we have always largely sup-

plemented the text by manuscript notes. These notes,

which now appear scattered throughout the present work,

have been collected at different times during the last twenty

H. H. A. b
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years, so that it is impossible to make definite acknowledge-

ment in every case where assistance has been obtained from

other writers. But speaking generally, our acknowledge-

ments are chiefly due to the treatises of Schlomilch, Serret,

and Laurent; and among English writers, besides Todhunter's

Algebra, we have occasionally consulted the works of De

Morgan, Colenso, Gross, and Chrystal.

To the Rev. J. Wolsienholme, D.Sc, Professor of Mathe-

matics at the Royal Indian Engineering College, our thanks

are due for his kindness in allowing us to select questions

from his unique collection of problems ; and the consequent

gain to our later chapters we gratefully acknowledge.

It remains for us to express our thanks to our colleagues

and friends who have so largely assisted us in reading and

correcting the proof sheets ; in particular we are indebted to

the Rev. H. C Watson of Clifton College for his kindness in

revising the whole work, and for many valuable suggestions;

in every part of it.

**' 1887 " H. S. HALL,
j

S. R. KNIGHT. <

PREFACE TO THE THIRD EDITION.

In this edition the text and examples are substantially

the same as in previous editions, but a few articles havej

been recast, and all the examples have been verified again.

We have also added a collection of three hundred Miscel-

laneous Examples which will be found useful for advanced

students. These examples have been selected mainly but

not exclusively from Scholarship or Senate House papers

;

much care has been taken to illustrate every part of the

subject, and to fairly represent the principal University and

Civil Service Examinations.

March, 1889.
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HIGHER ALGEBRA.

CHAPTER I.

RATIO.

1. Definition. Ratio is the relation which one quantity
bears to another of the same kind, the comparison being made by
considering what multiple, part, or parts, one quantity is of the
other. •

The ratio of A to B is usually written A : B. The quantities
A and B are called the terms of the ratio. The first term is

called the antecedent, the second term the consequent.

2. To find what multiple or part A is of B, we divide A
by B ; hence the ratio A : B may be measured by the fraction

-^ , and we shall usually find it convenient to adopt this notation.

In order to compare two quantities they must be expressed in

terms of the same unit. Thus the ratio of £2 to 15s. is measured
.... 2x20 8
by the traction —^— or - .

Note. A ratio expresses the number of times that one quantity con-
tains another, and therefore every ratio is an abstract quantity.

3. Since by the laws of fractions,

a ma
b
=
mJ'

it follows that the ratio a : b is equal to the ratio ma : mb ;

that is, the value of a ratio remains unaltered if the antecedent

and the consequent are multiplied or divided by the same quantity.

H. H. A. 1



2 HIGHER ALGEBRA.

4. Two or more ratios may be compared by reducing their

equivalent fractions to a common denominator. Thus suppose

_ _ x- xt a a V i
x bx ,

a : o and x : y are two ratios. JNow - = ~ and — = =— : henceJ
h by y by

3

the ratio a : b is greater than, equal to, or less than the ratio

x : y according as ay is greater than, equal to, or less than bx.

5. The ratio of two fractions can be expressed as a ratio

Ch C
of two integers. Thus the ratio — : — is measured by the°

b a
a

fraction — , or =— : and is therefore equivalent to the ratio
c be

d
ad : be.

6. If either, or both, of the terms of a ratio be a surd

quantity, then no two integers can be found which will exactly

measure their ratio. Thus the ratio J'2 : 1 cannot be exactly

expressed by any two integers.

7. Definition. If the ratio of any two quantities can be

expressed exactly by the ratio of two integers, the quantities

are said to be commensurable ; otherwise, they are said to be
incommensurable.

Although we cannot find two integers which will exactly

measure the ratio of two incommensurable quantities, we can

always find two integers whose ratio differs from that required

by as small a quantity as we please.

J5 2-236068... ™A1I,Thus V = -. = -559017...
4 4

, ,
. J5 559017 , 559018

and therefore — > mm(> and <
-jooOOOO

;

so that the difference between the ratios 559017 : 1000000 and

J5 : 4 is less than -000001. By carrying the decimals further, a

closer approximation may be arrived at.

8. Definition. Ratios are compounded by multiplying to-

gether the fractions which denote them ; or by multiplying to-

gether the antecedents for a new antecedent, and the consequents

for a new consequent.

Example. Find the ratio compounded of the three ratios

2a : Sb, Q>ab : 5c2
, c : a
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m. . , ,. 2a Gab c
The required ratio=-x --„ x -

6b be1 a

_4a
~ DC

'

9. Definition. When the ratio a : b is compounded with
itself the resulting ratio is a2

: b
2
, and is called the duplicate ratio

of a : b. Similarly a3
: b

3
is called the triplicate ratio of a : b.

Also a2
: b 2"

is called the subduplicate ratio of a : b.

Examples. (1) The duplicate ratio of 2a : 3b is 4a2
: 96-.

(2) The subduplicate ratio of 49 : 25 is 7 : 5.

(3) The triplicate ratio of 2x : 1 is 8a;3 : 1.

10. Definition. A ratio is said to he a ratio of greater
inequality, of less inequality, or of equality, according as the
antecedent is greater than, less than, or equal to the consequent.

11. A ratio of greater inequality is diminished, and a ratio of
less inequality is increased, by adding the same quantity to both

its terms.

a , ,, .. , , ,
a + x

Let T be the ratio, and let = be the new ratio formed by
6 b + x J

erms.

a a + x ax — bx

adding x to both its terms.

Now
b b + x b(b+x)

x(a — b)

~b(b + x)
}

and a - b is positive or negative according as a is greater or

less than b.

H. /, y a a + x
ence it a > b, T > ^ ;

o b + x

d.
« j a a ~t~ x

it a <b, 7- <
;

b b + x

which proves the proposition.

Similarly it can be proved that a ratio of greater inequality

is increased, and a ratio of less inequality is diminished, by taking

the same quantityfrom both its terms.

12. When two or more ratios are equal many useful pro-

positions may be proved by introducing a single symbol to

denote each of the equal ratios.

1—2



4 HIGHER ALGEBRA.

The proof of the following important theorem will illustrate

the method of procedure.

//
a c e

b d f '

1

, . . . /pan + qcn + re11 + . . .\ n

each of these ratios = ( —r- j- s ) ,J \pbn + qdn + rtn + . . . /

where p, q, r, n are any quantities ivhatever.

ace
j

Ijet 7
- = —, — ~>— • • • — & ')

b d J

then a — bk, c = dk, e =fk, ...;

whence pan =pbn^ qc" = qd"k
n

, re
n = rf"k",...

;

pa" + gc" + re
n + ... _pb"k" + qd"k

n + rf"k
n +

'''

pb H + qd"+rf+... '

fb
n + qcl

n +r/i +...

= k";

i

'pa" + qc" + re" + . . .\ n _ , a c

e
= k = ^ = -,=

2)b" + qd" + ?'/" + .../ b d

By giving different values to p, q, r, n many particular cases

of this general proposition may be deduced ; or they may be

proved independently by using the same method. For instance,

a _c e

b-~d'f-'"

each of these ratios
b+d +f+

a result of such frequent utility that the following verbal equi-

valent should be noticed : When a series of fractions are equal,

each of them is equal to the sum of all the numerators divided by the

sum of all the denominators.

(I C €>

Example 1. If - = - =- , shew that
b d J

azb + 2c2e - Sae2/_ ace

~b4 + 2^/-36/3 ~bdf

Let «-£-£-X;.Let
6
_

rf

_^._A,,

then a= bk, c = dk, e =fk ;
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aa6+2c»g-3qgy_W +2d?fk* - 3bf3k3

*
'*

k4 + 2tl-f - Bbf3
""

fc
4 + 2r/-/ - 36/8

... a c e

ace=
bdf'

Example 2. If - = f = -
, prove that

a b c

*2 + a2 y2 + &2 32 + c2 _ (
.c + y +2 )

2 + (a + & + c)2

#+a y + b z + c a; + ?/ + 2 + a + &+c

x it z
Let - = r = - = A; , so that x= «£, ?/ = 6/c, 2; = ch ;

a y c

„ sa + a3 aW+a* (k* + l)a
then =—- = L__— ' ;

a: + a ah + a Jc+1

x*+a* y
a+y • ga+e»_ (ife

a+l)o (&2 + l)& (fc
2 + l)c

ar+ a ?/ + & z + c
'

/c + 1 £ + 1 & + 1

Jfc2 + l)(a + 6 + c)

fc+1

Jfc
8 (a+6+c)8+(a+ 6+c)a

&(a + & + c) + a + 6 + c

_ (lea + kb + he)% + (a + b + c) 2

(ka + kb + kc)+a + b + c

_ (x+y+z)*+(a+ b + cf
x+y+z+a+b+c

13. If an equation is homogeneous with respect to certain

quantities, we may for these quantities substitute in the equation

any others proportional to them. For instance, the equation

lx
3
y + mxifz + ny2

z
2 —

is homogeneous in x, y, z. Let a, j3, y be three quantities pro-

portional to x, y, % respectively.

x 11 z
Put h = — = 75 = -

, so that x - ak, y = /3k, z = yk
;

a £ y

then Ia
3

f3k
4 + ma(32

yk* + n^y'k4 = 0,

that is, 7a
3
/? + ma/32

y + nj3
2

y
2 = ;

an equation of the same form as the original one, but with

a, /?, y in the places of x, y, z respectively.
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14. The following theorem is important.

.

.

.

.

. i Q

If y*
, y~ ,

.— ,.... r-
n

be unequal fractions, of which the de-
1 2 3 n

nominators are all of the same sign, then the fraction

a, + a
8
+ a

3
+ ... + an

b
l
+b

2
+b

3
+ •'• +bn

lies in magnitude between the greatest and least of them.

Suppose that all the denominators are positive. Let =* be the

least fraction, and denote it by k ; then

a

b
— /c i .'.a — ko «' r r >

a
y-

1 > k : .-. a> kb
b

l

a

i '

b
k; .-. a

2
> kb

2 ;

2 >
a

and so on;
.*. by addition,

a ,+«2 + «
3 + + a

n
>

(
b

l
+b

,
+ K + +K) k '>

a
l

+ a
2
+ a

3
+ + a

u . a
r

b.+b
9 + b.+ +b ' b

1 2 3 n r

Similarly we may prove that

a
l
+ a

2
+ a

3
+ + an a

t

6
.
+*.+* + +K

< V
where ^ is tlie greatest of the given fractions.

In like manner the theorem may be proved when all the
denominators are negative.

15. The ready application of the general principle involved
in Art. 12 is of such great value in all branches of mathematics,
that the student should be able to use it with some freedom in
any particular case that may arise, without necessarily introducing
an auxiliary symbol.

Example 1. If -

—

X— = V- = z
,

b + c-a c + a-b a + b-c

prove that
x + y + z = *&+*)+? (*+*)+ * (*+V)
a + b + c 2(ax + by + cz)
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t i e ,i • e i- sum °f numeratorsEach of the given fi actions = —

=

__
sum of denominators

_ x + y + z
' a + b + c

"
( ''

Again, if we multiply both numerator and denominator of the three
given fractions by y + z, z + x, x + y respectively,

each fractions \
{l

j
+ z)

- = ?(« + *>
__. - '(* + * )

(y + z)(b + c-a) (z + x) (c + a-b) (x+ y) (a+b-e)

sum of numerators

sum of denominators

=
x (y +z) + y (z + x) +z {x + y)

2ax + 2by + 2cz

.'. from (1) and (2),

x + y + z _x (y + z)+y (z + x)+z (x + y)

a + b + c~ 2 (ax + by + cz)

Example 2. If

(2).

prove that

l(mb + nc-la) m(nc + la-mb) n (la + mb - nc)
'

I m n

x(by + cz-ax) y (cz + ax-by) z(ax + by -cz)

We have

x y z

I m n
mb + nc — la nc + la-mb la + mb — nc

v z-+-
m n=
'"2/a"

= two similar expressions

;

ny + mz _lz + nx _ mx + ly

a b c

Multiply the first of these fractions above and below by .r, the second by
y, and the third by z ; then

nxy + mxz _ Jyz + nxy _ mxz + lyz

ax by cz

= _2lyz
by + cz- ax

= two similar expressions

;

I m n

x (by + cz -ax) y (cz + ax-by) z (ax + by-cz)'
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16. If we have two equations containing three unknown
quantities in the first degree, such as

a
l
x + b

l
y + c

l
z=Q (1),

a
2
x + b

2y + c
2
z = (2),

we cannot solve these completely ; but by writing them in the
form

X II

we can, by regarding - and - as the unknowns, solve in the
z z

ordinary way and obtain

x b
l
c
2
- b2c i y __ c

x
a

2
- c

2
a

l >

%
"

afi2
- a

2
b

l

'

z
"

afi2
-a

2
b

l

'

or, more symmetrically,

x y
,(3).

b
x
c
2
- b

2
c

x
c

l
a

2
- c

2
a, afi2

- a_p
x

'

It thus appears that when we have two equations of the type

represented by (1) and (2) we may always by the above formula
write down the ratios x : y : z in terms of the coefficients of the

equations by the following rule

:

Write down the coefficients of x, y, z in order, beginning with
those of y; and repeat these as in the diagram.

Multiply the coefficients across in the way indicated by the

arrows, remembering that in forming the products any one
obtained by descending is positive, and any one obtained by
ascending is negative. The three results

h
i
cz- hfv c

x
a2- c

2
an aA- a

2
b

>

are proportional to x, y, z respectively.

This is called the Rule of Cross Multiplication,
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Example 1. Find the ratios of x : y : z from the equations

7x=4y + Qz
t

3z= 12x + Uy.

By transposition we have 7x - Ay - 8-2 = 0,

12x + lly-Sz= 0.

"Write down the coeilicients, thus

-4 -8 7 -4
11 -3 12 11,

whence we obtain the products

(-4)x(-3)-llx(-8), (-8)xl2-(-3)x7, 7 x 11 - 12 x (-4),

or 100, -75, 125;

x y z
•'*

100 ~ ^75~"125'

x, ,. x y z
that is, - = -*- = ? .

4 -3 5

Example 2. Eliminate x, y, z from the equations

a
1a; + ^

1?/ + c
1
2 = (1),

a^ + ^y + c^^O (2),

Ogaj+fegy+c^^O (3).

From (2) and (3), by cross multiplication,

*__ _ y „ j* .

k>C3 " Vs C2«i ~ C3«2 «263 ~ llih
'

denoting each of these ratios by k, by multiplying up, substituting in (1),

and dividing out by A-, we obtain

Oj (Va - 63ca) + &
i (^'"3 - c 3a a) + (

'i («A - "A-) = °-

This relation is called the eliminant of the given equations.

Example 3. Solve the equations

ax + by + cz = (1),

x+ y+ z = (2),

hex + cay + abz = (b - c) (c-a) (a-b) (3).

From (1) and (2), by cross multiplication,

x y z
- = —^— = T — k, suppose :

b-c c-a a-b
.-. x = k (b- c), y — k (c - a), z — k(a- b).

Substituting in (3),

k {bc(b-c) + ca (c - a) + ab (a - b)} ={b- c) (c - a) {a - b),

k{-{b-c)(c- a) {a -
&) \ = (b-e) [e - a) {a - b)

;

.-. fcss-lj

^ln'nce x = c -b, y — a-r, z = b - a.
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17. If in Art. 16 we put z = 1, equations (1) and (2) become

a
x
x + b

xy + c
t

= 0,

v + h
2y + c

2
= ° >

and (3) becomes

x y
b

x
c
2
- b

2
c

l
c

x
a
a
- c

2
a

i
aj>

%
- a

2
b

]

'

a
l
b
2
-a b

l
* afi2

-a
2
b

l

Hence any two simultaneous equations involving two un-

knowns in the first degree may be solved by the rule of cross

multiplication.

Example. Solve 5x-3y -1 = 0, x + 2y = 12.

By transposition, 5x - 3y - 1 = 0,

x + 2y -12 = 0;

x y 1
*'•

36 + 2
=

- 1 + 60 ~ 10 + 3
;

38 59
whence x =

is' y = lS'

EXAMPLES. I.

1. Find the ratio compounded of

(1) the ratio 2a : 36, and the duplicate ratio of 9b2
: ab.

(2) the subduplicate ratio of 64 : 9, and the ratio 27 : 56.

2a /6a?
(3) the duplicate ratio of -j- : - M--

, and the ratio Sax : 2by.

2. If #+7 : 2 (#+ 14) in the duplicate ratio of 5 : 8, find x.

3. Find two numbers in the ratio of 7 : 12 so that the greater
exceeds the less by 275.

4. What number must be added to each term of the ratio 5 : 37
to make it equal to 1 : 3 \

5. If x : y=3 : 4, find the ratio of 7x-4y : 3x+y.

6. If 15 (2a-2 -y
2
) = *7xy, find the ratio of x : y.
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7 If ?=£ = «

2rt 4&2 + 3a2e2 -5eV "
l

prove that _^__^__ = _

8. If v = = -
7 ,

prove that -j is equal t<»6ca a

y
9. If

a _ y
q+r-p r+p-q p+q-r

shew that (q - r) x+ (r - p) y + (p - q) z= 0.

10. If —— ==-—- = -
, find the ratios of x : y : z.

x-z z y '

ii # if
y+ z = z+ 'v

==
-r+^

pb + qc pc+ qa pa+ qb'

Khew tliat
2 (*+?+*) _ (6+o).r+(C+«)y+(«±i)i
a+o+ c 6c+ <?a-|-a6

12. If i'=^ = 2
-,

a o c

3
.tfS+ a3

y
3 + 63 z3 + c3 _(.y+ ?/ + *)

3+ (q+ &+c)
shew tliat —„- „ t t-- ;,, + ., .,

— , \« /_ . j. , _\s •

.r-fa2 y* + b2 22 + c- (>c+y + 5)
i+ (a + o + c)-

2y + 2g-.v _ 2g + 2.-c-y _ 2A-+2y-g
1<J. II —

i
—

J

BheW that
26 + 2c-a

=
2c + 2a"- 6

=
2a+ 26-c

"

14. If (a2+62 + c2) (.i-
2+y2+ ^2) = («.v+^ + ^)2

,

shew that x : a=y : b= z : c.

15. If I (my + rut - Ix)=m (nz+ Ix - my) = n (Ix + my - nz\

y+z-x z+x-y x+y-z
prove -

—

-j
= = —-

-— •

1
I m n

16. Shew that the eliminant of

ax+ cy + bz= Q, cx+ by + az = 0, bx+ </y + c; = 0,

is a3+ &3+ c3 -3«6c= 0.

17. Eliminate x, y, z from the equations

ctx + hy + (/z= 0, hx+ by-\-fz= 0, gjc+fy+C2=0.
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18. If x= cy+ bz, y= az+cx
}
z=bx+ ay,

X II z2

shew that j—* = y i •>
=

n 9 •

1 - a1 \-b l \—cL

19. Given that a(y + z)=x, b(z+ x)=y, c(x+y)=z,

prove that bc + ca+ ab+ 2abc = l.

Solve the following equations :

20. 3x-4y+ 7z= 0, 21. x+y= z,

2x-y-2z= 0, 3x-2y+17z= 0,

to?-f+£=l8. x*+ 3f+ 2zs= l67.

22. tyz+ 3sa?=4an/, 23. 3x2 - 2y2+ oz2= 0,

2tys - Sac= 4ry, 7a* - 3y2 -I5z2= 0,

ff+2y+32=19. 5.0-4^+ 73= 6.

24. If .--* +-^L^ *„<>,

I m n

Ja+Jb
+
Jb+Jo

+
</c+V« '

shew that —— = ?==- = =-
(a-b)(c-\/ab) (b - c) (a - V be) (c - a) (b - \Jac)

Solve the equations

:

25. ax+ by + cz= 0,

bcx+ cay + abz= 0,

xyz + abc (a3x+ b3y+ &z)= 0.

26. a.-£+&y + C2=a2#+ &2y+ 6'22==0,

x + y+ z+ (b-c)(c-a) (a-b) = 0.

27. If a(y+x)=x, b(z+ x)=y, c(x+y)=z,

X2
?/
2 s2

prove that —-—7— = ,
—* =

1 a {I -be) b(l-ca) c(l-ab)

28. If ax + ky+gz= 0, kx + by+ fz^0, gx+fy+ cz= 0,

prove that

x2
y

2 z2

^ bc-f2 ca-g2 ab-h2

(2) (be -f
2
) {ea - g

2
)
(ab - h 2

) = (fg - eh) (gk- af) (A/- bg).



CHAPTER II.

PROPORTION,

18. Definition. When two ratios are equal, the four

quantities composing them are said to be proportionals. Thus
ft c

if - = - , then a, b, c, d are proportionals. This is expressed by

saying that a is to b as c is to d, and the proportion is written

a : b : : c : d

;

or a : b — c : d.

The terms a and d are called the extremes, b and c the means.

19. Iffour quantities are in proportion, the product of the

extremes is equal to the product of the means.

Let a, b, c, d be the proportionals.

Then by definition — =. — •

J
b d

whence ad = be.

Hence if any three terms of a proportion are given, the

fourth may be found. Thus if a, c, d are given, then b = —

.

Conversely, if there are any four quantities, a, b, c, d, such

that ad = be, then a, b, c, d are proportionals ; a and d being the

extremes, b and c the means ; or vice versa.

20. Definition. Quantities are said to be in continued

proportion when the first is to the second, as the second is

to the third, as the third to the fourth ; and so on. Thus

a, b, c, d, are in continued proportion when

a b c

bed
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If three quantities a, b, c are in continued proportion, then

a : b — b : c
\

.-. ac = b
2
. [Art. 18.]

In this case b is said to be a mean proportional between a and

c \ and c is said to be a third proportional to a and b.

21. If three quantities are proportionals the first is to the

third in the duplicate ratio of the first to tJie second.

Let the three quantities be a. b, c: then T = -.
1 be

a a b
Now = r x -cue

a a a2

=
b

X
6
=
F,;

that is, a : c = a2
: b

2
.

It will be seen that this proposition is the same as the definition

of duplicate ratio given in Euclid, Book v.

22. If a : b - c : d and e 'f=g : h, then will ae : bf= eg : dh.

„ a c , e g
.b or F = - and >=!-:

b d j h

ae eg
•'*

bf
=
dh

y

or ae : bf= eg : dh.

Cor. If a : b = c : d,

and b : x = d : v/,

then a : x = c : y-

This is the theorem known as ex cequali in Geometry.

23. If four quantities a, b, c, d form a proportion, many
other proportions may be deduced by the properties of fractions.

The results of these operations are very useful, and some of

them are often quoted by the annexed names borrowed from
Geometry.
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(1) If a : b = c : d, then b : a = d : c. [Invertendo.]

For - = -
; therefore 1 -f- =- = 1 -r- -_

;

b d' b d'

that is - = - :

a c

or b : a = d : c.

(2) If
.

a : b = c : d, then a : c = b : d. [Alternando.]

For acZ - be ; therefore —
j = —

;

•! , . a b
that is, - = -, :

c a

or a : c = b : d.

(3) If « : 6 = c : d, tlien a + b : b = c + d : d. [Componeudo.']

lor 7- = -, : therefore s- + 1 = -, + 1

:

o d o d

a + b c + d
that is 7

— = —=— :

o d

or a + b : 6 = c + d : d.

(4) If a : 6 = c : d, then a-b : b = c- d : d. [Divideudo.]

For =- = -, : therefore - — 1 = -
7
- 1

:

b d b d

. ,
" . a —bc-d

that is, —7— = —-=—
3

or a - b : b - c - d : d.

(5) If « : 6 - c : df, then a +6 : a — b=c+d:c— d.

For by (3) r = -j-

;

1 1 / * \ a — bc—d
and by (4) -j ^-j

. , . . . « + & c + d
.'. by division, = = •

J a-b c-d'
or a + b : a-b = c + d : c-d.

This proposition is usually quoted as Componeiuh a)id JJivi-

dendo.

Several other proportions may be proved in a similar way.
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24. The results of the preceding article are the algebraical

equivalents of some of the propositions in the fifth book of Euclid,

and the student is advised to make himself familiar with them

in their verbal form. For example, dividendo may be quoted as

follows

:

When there are four proportionals, the excess of the first above

the second is to the second, as the excess of the third above the

fourth is to the fourth.

25. We shall now compare the algebraical definition of pro-

portion with that given in Euclid.

Euclid's definition is as follows :

Four quantities are said to be proportionals when if any equi-

multiples whatever be taken of the first and third, and also any

equimultiples wJiatever of the second and fourth, the multiple of

the third is greater than, equal to, or less than the multiple of the

fourth, according as the multiple of the first is greater than, equal

to, or less than the multiple of the second.

In algebraical symbols the definition may be thus stated :

Four quantities a, b, c, d are in proportion when p>c = qd

according as p>a = qb, p and q being any positive integers tcJudever.

I. To deduce the geometrical definition of proportion from

the algebraical definition.

a c u
Since -z - -

,
by multiplying both sides by - , we obtain

pa 2)C

qb qd

'

hence, from the properties of fractions,

pc = qd according as pa = qb,

which proves the proposition.

II. To deduce the algebraical definition of proportion from
the geometrical definition.

Given that pc = qd according as pa = qb, to prove

a c

b
=

~d'
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If -j- is not equal to -
, one of them must be the greater.

Suppose
g > -^ ; then it will be possible to find some fraction 2

which lies between them, q and <p being positive integers.

Hence - > -
b p

P

0).

(2>
and - < ?

From (1) pa>qb;
from (2) 2)c<qd\

and these contradict the hypothesis.

Therefore y and - are not unequal; that is - = -• which proves

the proposition.

26. It should be noticed that the geometrical definition of pro-
portion deals with concrete magnitudes, such as lines or areas,
represented geometrically but not referred to any common unit
of measurement. So that Euclid's definition is applicable to in-

commensurable as well as to commensurable quantities ; whereas
the algebraical definition, strictly speaking, applies only to com-
mensurable quantities, since it tacitly assumes that a is the same
determinate multiple, part, or parts, of b that c is of d. But the
proofs which have been given for commensurable quantities will

still be true for incommensurables, since the ratio of two incom-
mensurables can always be made to differ from the ratio of two
integers by less than any assignable quantity. This lias been
shewn in Art. 7 ; it may also be proved more generally as in the
next article.

27. Suppose that a and b are incommensurable; divide b

into m equal parts each equal to /?, so that b = m/3, where m is a
positive integer. Also suppose f3 is contained in a more than n
times and less than n+ 1 times;

i, a nB . (n+1) B
then - > -^ and < * /^

,

o mp imp

that is, -= lies between — and ;

o m m

so that -j- differs from — by a quantity less than — . And since we

H. H. A. 2
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can choose B (our unit of measurement) as small as we please, m can

1

be made as great as we please. Hence — can be made as small

as we please, and two integers n and m can be found whose ratio

will express that of a and b to any required degree of accuracy.

28. The propositions proved in Art. 23 are often useful in

solving problems. In particular, the solution of certain equa-

tions is greatly facilitated by a skilful use of the operations com-

ponendo and dividendo.

Example 1.

If (2ma + 6mb + Snc + 9wtZ) (2ma - Gmb - Snc + 9nd)

= (2ma - 6mb + Snc - 9/uZ) (2mm + Gmi - Snc - dnd),

prove that a,b, c, d are proportionals.

2ma + Gmb + Snc + 9nd _ 2ma + Qmb - Snc - 9nd

2ma - bmb + Snc - \)nd 2ma - 6mb - Snc + 9nd
'

.*. componendo and dividendo,

2 (2ma + Snc) _ 2 {2ma - Sue)

2~{Gmb + 9nd) ~ 2 (Smb - 9m/)

'

2ma + Snc Gmb + (.)nd
Alternando, n

- =— = -—:—-—,.

2ma-Snc bmb-vna

Again, componendo and dividendo,

Ama _ \2mb

One ~ lQnd
;

a b
whence - = -,

,

c a

or a : b— c : d.

Example 2. Solve the equation

Jx+l + Jx^l _ 4a; -1

Jx + l- Jx-1 2

We have, componendo and dividendo,

Jx+l _ 4a; +

1

.r + l_ 16a;2 + 8a;+l
*'•

x - 1 " 16a;2 -24a; + 9
*

Again, componendo and dividendo,

2x _ 32a;2 - 16a; + 10

2 ~ ~ 32a; - 8

16a;2 -8a; + 5
" X ~

16a;- 4 '

whence 16a;2 - 4a;= 16a;2 - 8a; + 5
;

5
• • x = -.
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EXAMPLES. II.

1. Find the fourth proportional to 3, 5, 27.

2. Find the mean proportional between

(1) 6 and 24, (2) 36'0a4 and 250a262
.

X II x
3. Find the third proportional to

'

- -f - and --
.

y x y

If a : b= c : d, prove that

4. a2c + ac2
: b2d+ bd2= (a+ c) 3 : (b+ df.

5. pa2+ <?6
2

: £>a2 — qb2=pc2 + qd2
: pc2 — qd2

.

6. a-c : b-d=*Ja2 + c2 : *Jb2 + d2
.

7. \/a2~+"c2 : \/^+d^=j
S
/ac +

<

^ : ^Jbd+j.

If a, 6, c, o? are in continued proportion, prove that

8. a : 6 + ^=03 : <?d+d\

9. 2a+ 3(i : 3a-4d=2a3+ 3b3
: 3a3 -463

.

10. (a2+ b2+ c2
)
(b2+ c2+ d2

) = (aft+ &c 4- c^)2
.

11. If b is a mean proportional between a and c, prove that

•

a2_fr2+ c2

a- 2 -6- 2+ c- 2

12. If a : 6=c : d, and e : /=# : h
t
prove that

ae+ bf : ae-bf=cg+ dh : cg-dh.

Solve the equations

:

2afi-3afi+a;+l 3^-^+ 507-13
13.

14.

15.

2073-3072-07-1 3073 -072 -507+13*

Zx*+x2 - 2o7 - 3 _ 5o74+ 2o72 -7o7+ 3

3ot* - x2+ 2o;+ 3
~~

5o?4 - 2o72+ 7o- - 3
'

(m-\-n)x — (a- b) (m+ n)x+ a + c

(m-n)x — (a + 6) (wi — n)x+ a-c'

16. If a, &, c, o? are proportionals, prove that

7 . (a — b)(a — c)
+ d=b+ c+ K ^ -.a-

a

17. If a, b, c, d, e are in continued proportion, prove that

(ab+ be+ cd+ e&)
2= (a2+ 62+ c2+ rf

2
) (6

2+

c

2+d2+ e2).

2—2
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18. If the work done by x — 1 men in x+ 1 days is to the work done
by x+ 2 men in x - 1 days in the ratio of 9 : 10, find x.

19. Find four proportionals such that the sum of the extremes is

21, the sum of the means 19, and the sum of the squares of all four

numbers is 442.

20. Two casks A and B were filled with two kinds of sherry, mixed
in the cask A in the ratio of 2 : 7, and in the cask B in the ratio of

1 : 5. What quantity must be taken from each to form a mixture

which shall consist of 2 gallons of one kind and 9 gallons of the other \

21. Nine gallons are drawn from a cask full of wine; it is then

filled with water, then nine gallons of the mixture are drawn, and the

cask is again filled with water. If the quantity of wine now in the cask

be to the quantity of water in it as 16 to 9, how much does the cask

hold?

22. If four positive quantities are in continued proportion, shew
that the difference between the first and last is at least three times as

great as the difference between the other two.

23. In England the population increased 15*9 per cent, between
1871 and 1881; if the town population increased 18 per cent, and the

country population 4 per cent., compare the town and country popula-

tions in 1871.

24. In a certain country the consumption of tea is five times the
consumption of coffee. If a per cent, more tea and b per cent, more
coffee were consumed, the aggregate amount consumed would be 1c per
cent, more ; but if b per cent, more tea and a per cent, more coffee

were consumed, the aggregate amount consumed would be 3c per cent,

more : compare a and b.

25. Brass is an alloy of copper and zinc ; bronze is an alloy

containing 80 per cent, of copper, 4 of zinc, and 16 of tin. A fused
mass of brass and bronze is found to contain 74 per cent, of copper, 16
of zinc, and 10 of tin : find the ratio of copper to zinc in the composition
of brass.

26. A crew can row a certain course up stream in 84 minutes;
they can row the same course down stream in 9 minutes less than
they could row it in still water : how long would they take to row down
with the stream ?



CHAPTER III.

VARIATION.

29. Definition. One quantity A is said to vary directly
as another B, when the two quantities depend upon each other in
such a manner that if B is changed, A is changed in the same
ratio.

Note. The word directly is often omitted, and A is said to vary
as B.

For instance : if a train moving at a uniform rate travels

40 miles in 60 minutes, it will travel 20 miles in 30 minutes,
80 miles in 120 minutes, and so on; the distance in each case

being increased or diminished in the same ratio as the time.

This is expressed by saying that when the velocity is uniform
the distance is ptroportional to the time, or the distance varies as

the time.

30. The symbol oc is used to denote variation \ so that
A on B is read "A varies as B."

31. If A. varies as B, tlien A is equal to B multiplied by some
constant quantity.

For suppose that a, a
lt

a„, a
3
..., b, b

x
, b2 , b3

... are corresponding
values of A and B.

mi i i /» •,• a b a b a b ,

Inen, by deimition, — = =- : — = — ; — = -r ; and so on,
«, V ^ K »3 K

/. s-i = =* = y^= ,.j- each being equal to T .

6, 6
2

6
3

b

TT any value of A .

Hence -= r.
_ =—= is always the same :

the corresponding value ot B

that is, — — 7u, where m is constant.

.'. A=mB.
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If any pair of corresponding values of A and B are known,
the constant m can be determined. For instance, if A = 3 when
^=12,
we have 3 =m x 12;

and A = \B.

32. Definition. One quantity A is said to vary inversely

as another Z?, when A varies directly as the reciprocal of B.

Thus if A varies inversely as B, A = -^ , where m is constant.

The following is an illustration of inverse variation : If 6 men
do a certain work in 8 hours, 12 men would do the same work in

4 hours, 2 men in 24 hours ; and so on. Thus it appears that

when the number of men is increased, the time is proportionately

decreased; and vice-versa.

Example 1. The cube root of x varies inversely as the square of y ; if

x=8 when y = 3, find x when y = l^.

By supposition £/x= — , where m is constant.
if

Tit

Putting x= 8, y= 3, we have 2 =n>

.*. ?;t = 18,

v 18
and *jx = —,

;

r
hence, by putting y = ^, we obtain a;= 512.

Example 2. The square of the time of a planet's revolution varies as

the cube of its distance from the Sun; find the time of Venus' revolution,

assuming the distances of the Earth and Venus from the Sun to be 91-J and
66 millions of miles respectively.

Let P be the periodic time measured in days, D the distance in millions

of miles ; we have P2 a D3
,

or P*=kD3
,

where k is some constant.

For the Earth, 365 x 365 = k x 91± x 91| x 91£,

4x4x4
whence k =

365

. p2_ 4 x 4 x 4
" r ~ 365 " '
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For Venus, pa^i^ili x 66 x 66 x 6G ;

3 b.)

whence P=4x66 ::
/264

V 365

= 264 x a/*7233, approximately,

= 264 x -85

= 224-4.

Hence the time of revolution is nearly 224£ days.

33. Definition. One quantity is said to vary jointly as a
number of others, when it varies directly as their product.

Thus A varies jointly as B and C, when A = mBC. For in-

stance, the interest on a sum of money varies jointly as the
principal, the time, and the rate per cent.

3 -i. Definition. A is said to vary directly as B and in-

versely as C, when A varies as -^ .

35. 7/*A varies as B when C is constant, and A varies as C
when B is constant, then tvill A vary as BC ivhen both B and C
vary.

The variation of A depends partly on that of B and partly on
that of C. Suppose these latter variations to take place sepa-

rately, each in its turn producing its own effect on A ; also let

a, b, c be certain simultaneous values of A, B, C.

1

.

Let C be constant while B changes to b ; then A must
undergo a partial change and will assume some intermediate value

a\ where

"=- (1)

2. Let B be constant, that is, let it retain its value b, while C
changes to c ; then A must complete its change and pass from its

intermediate value a' to its final value a, where

From (1) and (2) — x - = — x - :

x
' a a b c

that is, A = =- . BC,
be

or A varies as BC.
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36. The following are illustrations of the theorem proved in

the last article.

The amount of work done by a given number of men varies

directly as the number of days they work, and the amount of

work done in a given time varies directly as the number of men

;

therefore when the number of days and the number of men are

both variable, the amount of work will vary as the product of

the number of men and the number of days.

Again, in Geometry the area of a triangle varies directly as

its base when the height is constant, and directly as the height

when the base is constant ; and when both the height and base

are variable, the area varies as the product of the numbers

representing the height and the base.

Example. The volume of a right circular cone varies as the square of the

radius of the base when the height is constant, and as the height when the

base is constant. If the radius of the base is 7 feet and the height 15 feet,

the volume is 770 cubic feet ; find the height of a cone whose volume is 132

cubic feet and which stands on a base whose radius is 3 feet.

Let h and r denote respectively the height ani radius of the base

measured in feet ; also let V be the volume in cubic feet.

Then V=mr2h, where m is constant.

By supposition, 770 —m x 72 x 15
;

22
whence m= —

;

.*. by substituting V= 132, r= S, we get

22
132=- xOxft;

— X

whence 7i= 14

;

and therefore the height is 14 feet.

37. The proposition of Art. 35 can easily be extended to the

case in which the variation of A depends upon that of more than

two variables. Further, the variations may be either direct or

inverse. The principle is interesting because of its frequent oc-

currence in Physical Science. For example, in the theory of

gases it is found by experiment that the pressure (p) of a gas

varies as the "absolute temperature" (t) when its volume (v) is

constant, and that the pressure varies inversely as the volume

when the temperature is constant ; that is

2? oc t, when v is constant

;
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and p cc -
, when t is constant.

v

From these results we should expect that, when both t and v are
variable, we should have the formula

p cc - , or pv = kt, where k is constant

;

and by actual experiment this is found to be the- case.

Example. The duration of a railway journey varies directly as the
distance and inversely as the velocity; the velocity varies directly as the
square root of the quantity of coal used per mile, and inversely as the
number of carriages in the train. In a journey of 25 miles in half an hour
with 18 carriages 10 cwt. of coal is required; how much coal will be
consumed in a journey of 21 miles in 28 minutes with 16 carriages?

Let t be the time expressed in hours,
d the distance in miles,

v the velocity in miles per hour,

q the quantity of coal in cwt.,

c the number of carriages.

We have t oc -

,

v

and v oc *!l

,

c

whence t oc —

,

or t ——7- , where k is constant.

Substituting the values given, we have

1 _ k x 18 x 25

2 ~ jm ;

that is, k =
25x36"

v/lO . cd
Hence t= ^—^—T .

2o x 36 Jq
Substituting now the values of t, c, d given in the second part of the

question, we have

28 710x16x21
.

60" 25x36^2 '

a •• /
n/10x 16x21 ^ ,-

that is, s/q=—15x28 =5^10,

whence q — -=-= 6|.

Hence the quantity of coal is 6|cwt.
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EXAMPLES. III.

1. If x varies as y, and #=8 when y= 15, find x when y= 10.

2. If P varies inversely as Q, and P=7 when #= 3, find P when

3. If the square of x varies as the cube of y, and x—3 when y= 4,

find the value of y when #=-y- .

3 10
4. A varies as B and C jointly; if A = 2 when #= - and C=—

,

find when A = 54 and i?= 3.

5. If .4 varies as C, and i? varies as C, then J. ±Z? and \/AB will

each vary as C.

C
6. If J. varies as BC, then Z> varies inversely as -7 .

2
7. P varies directly as Q and inversely as R\ also P= ~ when

o

^ = - and R =— : find (^ when P=a/48 and jR=\/<5.

8. If a' varies as y, prove that x2+y2 varies as x2 -y\

9. If y varies as the sum of two quantities, of which one varies

directly as x and the other inversely as x ; and if y= 6 when x=4, and

y= 31 when x= 3 ; find the equation between x and y.

10. If 3/ is equal to the sum of two quantities one of which varies

as x directly, and the other as x2 inversely; and if y= 19 when x=2, or

3 ; find y in terms of x.

11. If A varies directly as the square root of B and inversely as

the cube of C, and if 4= 3 when .£=256 and C=2, find B when A = 24

and C=g .

12. Given that x + y varies as z+ -
, and that x — y varies as z—

,

z z

find the relation between x and z, provided that z=2 when x=3 and

y= \.

13. If J. varies as B and C jointly, while B varies as Z>2, and C
varies inversely as A, shew that A varies as D.

14. If y varies as the sum of three quantities of which the first is

constant, the second varies as .r, and the third as x2
; and if y= when

x=l, y= l when x=2, and y= 4 when x= 3; find y when x=7.

15. When a body falls from rest its distance from the starting

point varies as the square of the time it has been falling : if a body falls

through 402^ feet in 5 seconds, how far does it fall in 10 seconds ?

Also how far does it fall in the 10th second?
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16. Given that the volume of a sphere varies as the cul>c of its

radius, and that when the radius is 3-&- feet the volume is 179rj cubic
feet, find the volume when the radius is 1 foot 9 inches.

17. The weight of a circular disc varies as the square of the radius
when the thickness remains the same; it also varies as the thickness
when the radius remains the same. Two discs have their thicknesses
in the ratio of 9 : 8 ; find the ratio of their radii if the weight of the
first is twice that of the second.

18. At a certain regatta the number of races on each day varied
jointly as the number of days from the beginning and end of the regatta

up to and including the day in question. On three successive days
there were respectively 6, 5 and 3 races. Which days were these, and
how long did the regatta last?

19. The price of a diamond varies as the square of its weight.

Three rings of equal weight, each composed of a diamond set in gold,

have values «£«., £b, £c> the diamonds in them weighing 3, 4, 5 carats

respectively. Shew that the value of a diamond of one carat is

the cost of workmanship being the same for each ring.

20. Two persons are awarded pensions in proportion to the square

root of the number of years they have served. One has served 9 years

longer than the other and receives a pensio?i greater by ,£50. If the

length of service of the first had exceeded that of the second by 4| years

their pensions would have been in the proportion of 9 : 8. How long

had they served and what were their respective pensions ?

21. The attraction of a planet on its satellites varies directly as

the mass (M)of the planet, and inversely as the square of the distance

(D) ; also the square of a satellite's time of revolution varies directly

as the distance and inversely as the force of attraction. If m v dv tv
and m

2, d2, £2, are simultaneous values of J/, D, T respectively, prove

that

Hence find the time of revolution of that moon of Jupiter whose
distance is to the distance of our Moon as 35 : 31, having given

that the mass of Jupiter is 343 times that of the Earth, and that the

Moon's period is 27*32 days.

22. The consumption of coal by a locomotive varies as the square

of the velocity; when the speed is 10 miles an hour the consumption of

coal per hour is 2 tons : if the price of coal be 10s. per ton, and the other

expenses of the engine be lis. 3c/. an hour, find the least cost of a journey

of 100 miles.
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ARITHMETICAL PROGRESSION.

38. Definition. Quantities are said to be in Arithmetical

Progression when they increase or decrease by a common dif-

ference.

Thus each of the following series forms an Arithmetical

Progression :

3, 7, 11, 15,

8, 2, -4, -10,

a, a + d, a + 2d, a + 3d,

The common difference is found by subtracting any term of

the series from that which follows it. In the first of the above

examples the common difference is 4 ; in the second it is — 6 ; in

the third it is d.

39. If we examine the series

a, a + d, a + 2d, a + 3d, . .

.

we notice that in any term the coefficient of d is always less by one

than the number of the term hi the seiies.

Thus the 3rd term is a + 2d;

6th term is a + 5d
;

20th term is a + I9d',

and, generally, the p
th term is a +

(p — \)d.

If n be the number of terms, and if I denote the last, or

?i
th term, we have I = a + (n — 1) d.

40. To find the sum of a number of terms in Arithmetical

Progression.

Let a denote the first term, d the common difference, and n
the number of terms. Also let I denote the last term, and s
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the required sum ; then

8 = a+(a + d) + (a + 2d) + ... + (I - 2d) + (l-d) + l;

and, by writing the series in the reverse order,

s = I + (I - d) + (I - 2d) + ... + (a + 2d)+ (a + d) + a.

Adding together these two series,

2s = (a + l) + (a + l) + (a + l)+ ... to n terms

= n (a + I),

•'• s = ^(a + l) (1);
a

and l~a + (n-l)d (2),

.-. s = -^{2a + (n-l)d\ (3).

41. In tlie last article we have three useful formula; (1),

(2), (3) ; in each of these any one of the letters may denote

the unknown quantity when the three others are known. For
instance, in (1) if we substitute given values for s, n, I, we obtain

an equation for finding a ; and similarly in the other formulae.

But it is necessary to guard against a too mechanical use of these

general formulae, and it will often be found better to solve simple

questions by a mental rather than by an actual reference to the

requisite formula.

Example 1. Find the sura of the series 5^, GJ, 8, to 17 terms.

Here the common difference is 1^; hence from (3),

the sum = \ 2 x — + 16

=y (11+20)

17x31
~2

= 263£.

Example 2. The first term of a series is 5, the last 45, and the sum
400 : find the number of terms, and the common difference.

If n be the number of terms, then from (1)

400 = " (5 + 4r>);

whence n = 10.

*li|
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If d be the common difference

45= the 16th term= 5 + 15d;

whence d= 2f

.

42. If any two terms of an Arithmetical Progression be

given, the series can be completely determined; for the data

furnish two simultaneous equations, the solution of which will

give the first term and the common difference.

Example. The 54th and 4th terms of an A. P. are - 61 and 64 ; find the

23rd term.

If a be the first term, and d the common difference,

- 61 = the 54th term = a + 53d
;

and 64= the 4 th term = a + 3d
;

5
whence we obtain d= -jr, a = Hh. ;

and the 23rd term= a + 22d= 16£.

43. Definition. When three quantities are in Arithmetical

Progression the middle one is said to be the arithmetic mean of

the other two.

Thus a is the arithmetic mean between a — d and a + d.

44. Tofind the arithmetic mean betiveen two given quantities.

Let a and b be the two quantities ; A the arithmetic mean.

Then since a, A, b are in A. P. we must have

b - A = A — a,

each being equal to the common difference

;

a + b
whence A —

2

45. Between two given quantities it is always possible to

insert any number of terms such that the whole series thus

formed shall be in A. P. ; and by an extension of the definition in

Art. 43, the terms thus inserted are called the arithmetic means.

Example. Insert 20 arithmetic means between 4 and 67.

Including the extremes, the number of terms will be 22 ; so that we have

to find a series of 22 terms in A.P., of which 4 is the first and 67 the last.

Let d be the common difference

;

then 67 = the 22nd term = 4 + 21d
;

whence d= S, and the series is 4, 7, 10, 61, 64, 67
;

and the required means are 7, 10, 13, 58, 71, 64.
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46. To insert a given number of arithmetic means betiveen

two given quantities.

Let a and b be the given quantities, n the number of means.

Including the extremes the number of terms will be u + 2

;

so that we have to find a series of n + 2 terms in A. P., of which
a is the first, and b is the last.

Let d be the common difference

;

then b = the (n + 2)
th term

whence d = r :

71+ 1
'

and the required means are

b — a 2 (b — a) nib — a)
a + -

, a H *—=-'
, a +—*—_- '

.n+l n+l n+l

Example 1. The sum of three numbers in A.P. is 27, and the sum of

their squares is 293 ; find them.

Let a be the middle number, d the common difference ; then the three

numbers are a - d, a, a + d.

Hence a-d+ a+ a + d= 27
;

whence a = 9, and the three numbers are 9 - d, 9, $ + d.

.-. (9-rf) 2 + 81 + (9 + d) 2= 293;

whence d=±5;

and the numbers are 4, 9, 14.

Example 2. Find the sum of the first p terms of the series whose
w"' term is 3n - 1.

By putting n=l, and n=p respectively, we obtain

first term = 2, last term =3p — 1

;

.-. sum=|(2 + 3i>-l)=|(3p + l).

EXAMPLES. IV. a.

1. Sum 2, 3|, 4J,... to 20 terms.

2. Sum 49, 44, 39,... to 17 terms.

3 2 7
3. Sum-, -, — ,... to 19 terms.

4 o I —
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7
4. Sum 3, -, If,... to n terms.

o

5. Sum 3'75, 35, 3-25,... to 16 terms.

6. Sum -Tl, -7, -6J,... to 24 terms.

7. Sum 1-3, -3-1, -7-5,... to 10 terms.

6 12
8. Sum -.-

, 3 x/3, -75 »... to 50 terms.

3 4
9. Sum -j= , -tt

, V5 ;-.. to 25 terms.

10. Sum a - 36, 2a - 56, 3a - 76, . . . to 40 terms.

11. Sum 2a - 6, 4a - 36, 6a - 56,. . . to n terms.

n tt+ 6 3a-6 , ,, ,

12. Sum -£- , a, —^— ,... to 21 terms.

13. Insert 19 arithmetic means between - and — 9|.

14. Insert 17 arithmetic means between 3^ and — 41§.

15. Insert 18 arithmetic means between - 36.17 and S.v.

16. Insert as arithmetic means between x2 and 1.

17. Find the sum of the first n odd numbers.

18. In an A. P. the first term is 2, the last term 29, the sum 155;

find the difference.

19. The sum of 15 terms of an A. P. is 600, and the common differ-

ence is 5 ; find the first term.

20. The third term of an A. P. is 18, and the seventh term is 30
;

find the sum of 17 terms.

21. The sum of three numbers in A. P. is 27, and their product is

504 ; find them.

22. The sum of three numbers in A. P. is 12, and the sum of their

cubes is 408 ; find them.

23. Find the sum of 15 terms of the series whose nth term is 4?i4- 1.

24. Find the sum of 35 terms of the series whose p
ih term is ^ + 2.

25. Find the sum ofp terms of the series whose nth term is - + b.

26. Find the sum of n terms of the series

2a2 - 1 3 6a2 -5
, 4a , , . .

.

a a a
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47. In an Arithmetical Progression when s, a, d are given,

to determine the values of n we have the quadratic equation

s = ^ <2a + (n- l)d\
;

when both roots are positive and integral there is no difficulty

in interpreting the result corresponding to each. In some cases

a suitable interpretation can be given for a negative value of n.

Example. How many terms of the series -9, -6, -3,... must be
taken that the sum may be G6 ?

Here ? {-18 + (»-l) 3}=66;

that is, n--ln-U = Q,

or (n-ll)(n+4)=0;

.'. ?i=ll or - 4.

If we take 11 terms of the series, we have

- 9, - 6, - 3, 0, 3, 6, 9, 12, 15, 18, 21

;

the sum of which is 66.

If we begin at the last of these terms and count backwards four terms, the
sum is also 66; and thus, although the negative solution does not directly

answer the question proposed, we are enabled to give it an intelligible meaning,
and we see that it answers a question closely connected with that to which
the positive solution applies.

48. We can justify this interpretation in the general case in

the following way.

The equation to determine n is

dn2 + (2a-d)n-2s = (1).

Since in the case under discussion the roots of this equation have

opposite signs, let us denote them by n and - n . The last

term of the series corresponding to n
l
is

a + (n
l

- 1 ) d

;

if we beirin at this term and count backwards, the common
difference must be denoted by - d, and the sum of yi., terms is

|{2 (« + »,-!</) + (», -!)(-</)}

and we shall shew that this is equal to 6-.

H. H. A. 3
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For the expression = -? \ 2a + (2n
{

— n
2
— l)dl

=
^ 1

2an
2
+ 2n

x
n

2
d - n

2
(n

2
+ 1) d

1
= ^ I 2n

x

n
2
d - (da* - 2a - d .n

2)\

= l(4s-2s) = s,

since — n
2

satisfies dn2 + (2a — d) n— 2s = 0, and — n
}

n
2

is the

product of the roots of this equation.

49. When the value of n is fractional there is no exact num-
ber of terms which corresponds to such a solution.

Example. How many terms of the series 26, 21, 16, ...must be taken to

amount to 71 ?

n
Here ~ {52+ (n-l)(-5)} = 74;

that is, 5)i2 - 57u + 148= 0,

or (n-4)(5n-37) = 0;

.*. ?i = 4 or 1%.

Thus the number of terms is 4. It will be found that the sum of 7 terms

is greater, while the sum of 8 terms is less than 74.

50. We add some Miscellaneous Examples.

Example 1. The sums of n terms of two arithmetic series are in the

ratio of 7?t + l : 4« + 27; rind the ratio of their 11 th terms.

Let the first term and common difference of the two series be av d
x
and

a„, d2
respectively.

"

We have |M^* £+1
2a2 + {n-l)d

2 4?i + 27

Now we have to find the value of —

—

tttt', hence, by putting n—21, we
a
2 + l0d

2

' x

obtain

2^ + 20^ _ 148 _ 4
_

2a2 + 20d
2
~ 111

"~ 3

'

thus the required ratio is 4 : 3.

Example 2. If Su S2 , S&...S,, are the sums of n terms of arithmetic

series whose first terms are 1, 2, 3, 4,... and whose common differences are

1, 3, 5, 7,... ; find the value of

#L+ <Sf
2+£3+. .. + £„.
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We have S^ {2 + (n - 1)} =
nAH+D

,

.S>^{2i>+(»-l)(2i;-l)}=
?
-
i

{(2p-l)n+l};

w
•. the required sum= - {(n + l) + (3n + l) + (2/>- 1 . n + 1)}

m

?l ~

= -
{
(n + 3n + 5n + . . .2p - 1 . ;/) + p)

= 1

±{n(l + 3 + 5+...21>-l)+p}

= r
2

(»l>
2
+P)

EXAMPLES. IV. b.

1. Given a= -2, c?=4 and .5= 100, find n.

2. How many terms of the series 12, 16, 20,... must be taken to

make 208 ?

3. In an A. P. the third term is four times the first term, and the

sixth term is 1 7 ; find the series.

4. The 2n *1

, 31 st
, and last terms of an A. P. are 7j, 5 and -6j

respectively ; find the first term and the number of terms.

5. The 4th
, 42nd, and last terms of an A. P. are 0, - 95 and - 1 25

respectively ; find the first term and the number of terms.

6. A man arranges to pay off a debt of £3600 by 40 annual
instalments which form an arithmetic series. When 30 of the instal-

ments are paid he dies leaving a third of the debt unpaid: find the

value of the first instalment.

7. Between two numbers whose sum is 2£ an even number of

arithmetic means is inserted; the sum of these means exceeds their

number by unity : how many means are there 2

8. The sum of n terms of the series 2, 5, 8,... is !>">0
: find n.

3—2
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9. Sum the series - r ,
-_ , , .— , ... to n terms.

10. If the sum of 7 terms is 49, and the sum of 17 terms is 289,

find the sum of n terms.

11. If the p
th

, q
th

, r
ih terms of an A. P. are a, b, c respectively, shew

that (q-i')a+ (r-p)b+(p-q)c= 0.

12. The sum ofp terms of an A. P. is q, and the sum of q terms is

p ; find the sum ofp + q terms.

13. The sum of four integers in A. P. is 24, and their product is

945 ; find them.

14. Divide 20 into four parts which are in A. P., and such that the

product of the first and fourth is to the product of the second and third

in the ratio of 2 to 3.

15. Thepth term of an A. P. is q, and the q
th term is p ; find the

mtb term.

16. How many terms of the series 9, 12, 15,... must be taken to

make 306?

17. If the sum of n terms of an A. P. is 2n+ 3n2
, find the ?

tth term.

18. If the sum of m terms of an A. P. is to the sum of n terms as

'in
2 to ?i

2
, shew that the mth term is to the nth term as 2m — 1 is to 2n — 1.

19. Prove that the sum of an odd number of terms in A. P. is equal

to the middle term multiplied by the number of terms.

20. If 5= n (pn - 3) for all values of n
t
find thepth term.

21. The number of terms in an A. P. is even ; the sum of the odd
terms is 24, of the even terms 30, and the last term exceeds the first by
10 1 : find the number of terms.

22. There are two sets of numbers each consisting of 3 terms in A. P.

and the sum of each set is 15. The common difference of the first set

is greater by 1 than the common difference of the second set, and the
product of the first set is to the product of the second set as 7 to 8 : find

the numbers.

23. Find the relation between x and y in order that the ?
,th mean

between x and 2y may be the same as the ?-th mean between 2x and y,
n means being inserted in each case.

24. If the sum of an A. P. is the same for p as for q terms, shew
that its sum forp + q terms is zero.



CHAPTER V.

GEOMETRICAL PROGRESSION.

51. Definition. Quantities are said to be in Geometrical

Progression when they increase or decrease by a constant factor.

Thus each of the following series forms a Geometrical Pro-

gression :

3, G, 12, 24,

1 -
1 I -I
3' 9' 27'

a, ar, ar2
, ar

3

,

The constant factor is also called the common ratio, and it is

found by dividing any term by that which immediately iwecedes

it. In the first of the above examples the common ratio is 2 ; in

the second it is — - ; in the third it is r.
o

52. If we examine the series

a, ar, ar2
, ar

3
, aiA

,

we notice that in any term the index of r is always less by one

tlian the number of the term in the series.

Thus the 3rd term is ar
2

;

the 6th term is ars

;

the 20th term is ar19

;

and, generally, the p
ih term is a?^

-1
.

If n be the number of terms, and if I denote the last, or n,h

term, we have l = ar"~\

53. Definition. When three quantities are in Geometrical

Progression the middle one is called the geometric mean between

the other two.
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Tofind the geometric mean between two given quantities.

Let a and b be the two quantities ; G the geometric mean.

Then since a, G, b are in G. P.,

b _G
G~ a'

each being equal to the common ratio

;

.-. G2 = ab;

whence G = Jab.

54. To insert a given number of geometric means between

two given quantities.

Let a and b be the given quantities, n the number of means.

In all there will be n + 2 terms ; so that we have to find a

series of n + 2 terms in G. P., of which a is the first and b the last.

Let r be the common ratio
;

then b = the (n + 2)
th term

«r"
+1

;

" ~a'
i

••"©" <»

Hence the required means are of, a?-
2
,... ar

n

,
where r has the

value found in (1).

Example. Insert 4 geometric means between 100 and 5.

We have to find 6 terms in G. P. of which 160 is the first, and 5 the

sixth.

Let r be tbe common ratio

;

tben 5= the sixth term

= 160?'5
;

. 1

* ' ~32'

whence r= o'

and the means are 80, 40, 20, 10.
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55. To find the sum of a number of terms in Geometrical

Progression.

Let a be the first term, r the common ratio, n the number of

terms, and s the sum required. Then

8 = a + car + ar2 + + ar
n ~ 2 + ar"~

l

;

multiplying every term by r, we have

rs = ar + ar2 + + ar"~
2 + ar""

1 + ar*,

Hence by subtraction,

rs — s = arn — a
;

.-. (r-l)s = a(r"-l);

,..-5fe^a (i).
r - 1

Changing the signs in numerator and denominator,

.-?S=*3 (2).
1 -r

Note. It will be found convenient to remember both forms given above

for s. using (2) in all cases except when?1 isj^ositive and greater than 1.

Since ar'^ 1 ^ 1, the formula (1) may be written

rl-a
S=

7--T :

a form which is sometimes useful.

2 3
Example. Sum the series -

, -1, -, to 7 terms.

3
The common ratio = - -

; hence by formula (2)

the sum = — (-23

II
2187]

128 I

2 2315 2
~ 3

X
128 * 5

403
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n
111

56. Consider the series 1, r, ^-2 , ~ 3 ,

The sum to n terms =

2

>-

-H1

.2- 2

27

2
«-i •

From this result it appears that however many terms be

taken the sum of the above series is always less than 2. Also we
see that, by making n sufficiently large, we can make the fraction

njr-^i
as smaU as we please. Thus by taking a sufficient number

of terms the sum can be made to differ by as little as we please

from 2.

In the next article a more general case is discussed.

57. From Art. 55 we have s = \
1 -r
a ar"

1—t 1 — r
'

Suppose r is a proper fraction; then the greater the value of

ar'
1

n the smaller is the value of ?•", and consequently of ; and

therefore by making n sufficiently large, we can make the sum of

n terms of the series differ from ^ by as small a quantity as

we please.

This result is usually stated thus : the sum of an infinite

number of terms of a decreasing Geometrical Progression is ^ :

1 — r

or more briefly, the sum to infinity is
a

1-r'
Example 1. Find three numbers in G. P. whose sum is 19, and whose

product is 216.

Denote the numbers by -, a, ar; then - x a x ar= 216 ; hence a= 6, and
r r

the numbers are - , 6, 6r.
r
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6
- + 6 + 6r=19;
r

.-. 6-13r + 6r2= 0;

3 2
whence r = - or -

.

Thus the cumbers are 4, 6, 9.

Example 2. The sum of an infinite number of terms in G. P. is 15, and

the sum of their squares is 45 ; find the series.

Let a denote the first term, r the common ratio ; then the sum of the
(l ' ci^

terms is ; and the sum of their squares is -z „

.

1 - r 1 -r*

Hence ,—=15 (1),
1 - r

a2

1 _72= 45 (2)-

Dividing (2) by (1) ~ = 9 (3),

l + r
and from (1) and (3) z = 5;

2
whence r=x , and therefore a = 5.

an, +1
... 10 20

Thus the series is o, — , — ,

o y

EXAMPLES. V. a.

112
1. Sum -,-,-,... to 7 terms.

A O 9

2. Sum -2, 2^, -3i,... to 6 terms.

3. Sum ^t, l£, 3,... to 8 terms.

4. Sum 2, -4, 8,... to 10 terms.

5. Sum 16'2, 5-4, 1-8,... to 7 terms.

6. Sum 1, 5, 25,... to p terms.

7. Sum 3, -4, — ,... to 2n terms.
o

8. Sum 1, N/3, 3,... to 12 terms.

1 8
9. Sum -j-

, -2, -jr ,... to 7 terms.
v
/2

'

s'2
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11 3
10. Sum -~, 3, -j,.- to ^ terms.

4
11. Insert 3 geometric means between 2^ and - .

13. Insert 6 geometric means between 14 and - — .

12. Insert 5 geometric means between 3f and 40|.

I
64

Sum the following series to infinity

:

14. |, -1, ?,... 15. -45, -015, -0005,...

16. 1-665, -1-11, -74,... 17. 3" 1
,
3~ 2

,
3-',...

18. 3, v/3, 1,... 19. 7, N/42, 6,...

20. The sum of the first 6 terms of a G. P. is 9 times the sum of

the first 3 terms ; find the common ratio.

21. The fifth term of a G. P. is 81, and the second term is 24; find

the series.

22. The sum of a G. P. whose common ratio is 3 is 728, and the

last term is 486 ; find the first term.

23. In a G. P. the first term is 7, the last term 448, and the sum
889 ; find the common ratio.

24. The sum of three numbers in G. P. is 38, and their product is

1728; find them.

25. The continued product of three numbers in G. P. is 216, and
the sum of the product of them in pairs is 156 ; find the numbers.

26. If Sp denote the sum of the series l+rp + r2p +... ad inf., and
sp the sum of the series 1 — rp+ r2p - ... ad inf., prove that

/Op + Sp == ^*ij'2p'

27. If the pth
, q

th
, r

th terms of a G. P. be a, b, c respectively, prove
that a«- r 6r-*c*-«=l.

28. The sum of an infinite number of terms of a G. P. is 4, and the

sum of their cubes is 192 ; find the series.

58. Recurring decimals furnish a good illustration of infinite

Geometrical Progressions.

Example. Find the value of "423.

•423 =-4232323

4 23 23
~ io

+
iooo

+
iooooo

+

~io + IP + 10
5+ ;
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that,*, -«3-
10

,

103
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4 2323 / 1 1 \
+

io3
V

+
io2

+
io-*

+
)

_4 23 1_
10

+
10 :: ' _ _1_

10"

4_ 23 100

"io"
1"! 3̂ " 99

4 _23
~~
10
+
990

_419
" 990

'

which agrees with the value found by the usual arithmetical rule.

59. The general rule for reducing any recurring decimal to

a vulgar fraction may be proved by the method employed in the

last example ; but it is easier to proceed as follows.

Tojind the value of a recurring decimal.

Let P denote the figures which do not recur, and suppose

them j> in number; let Q denote the recurring period consisting of

q figures ; let D denote the value of the recurring decimal ; then

;

>

D = 'PQQQ

.-. 10>xD = P'QQQ

and 10T+' *D = PQ-QQQ

therefore, by subtraction, (10
p+y - lC) D = PQ-P;

that is, 10" (10' - 1) D = PQ - P
;

. D _ PQ-P
'

'

(10''- 1)10'''

Now 10"- 1 is a number consisting of q nines; therefore the

denominator consists of q nines followed by p ciphers. Hence
we have the following rule for reducing a recurring decimal to a

vulgar fraction :

For the numerator subtract the integral number consisting of
the nonrecurring fgures from the integral number consisting of

the non-recurring and recurring figures ; for the denominator take

a number consisting of as many nines as there are recurringjig n n 8

followed by as many ciphers as there are non-recurring figures.
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60. To find the sum ofn terms of the series

a, (a + d) r, (a + 2d) r
2

,
(a + 3d) r

3
,

in which each term is the product of corresponding terms in an
arithmetic and geometric series.

Denote the sum by S ; then

S=a+(a + d)r+(a + 2d)r2 + ... + (a + n~^ld)r"-'

;

.-. rS= ar + (a + d)r2+ . . . +(a+ n-2d)rn ~ l+ (a + n -ld)rn
.

By subtraction,

S(l - r) = a + (dr + dr2 + . . . + dr"" 1

) - (a + n-lct)

r

n

dr(\-rn ~ l

) , -
N „= a +—^ = - (a + n - Id) r

;

1 —

r

v
' '

a dr(l-r"- 1

) _ (
a + n~^\d) r"

•'•

l-r
+

(1-r)2 T^r
'

Cor. Write S in the form

a dr dr" (a + n~ld)r\
l-r

+
(l-ry~ (l-r)* T^r ;

then if r<l, we can make r" as small as we please by taking n
sufficiently great. In this case, assuming that all the terms which
involve rn can be made so small that they may be neglected, we

obtain -z— + 7^ r„ for the sum to infinity. We shall refer
1-r (1 -r) J

to this point again in Chap. XXI.

In summing to infinity series of this class it is usually best to

proceed as in the following example.

Example 1. If x <1, sum the series

l + 2ar + 3x2 + 4x3 + to infinity.

Let S= l + 2a; + 3a:s + 4as + ;

.-. xS= x + 2x* + 3x*+ ;

S(l-x) = l + x + x2 + x*+• •

1

~l-x ]

• a- I
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Example 2. Sum the series 1 + - + -, + —. + . . . to n terms.
o o- 0"*

T » i
^ 7 10 Sn-2

Let S== i+i+
_ + _+ + _..

1 1 4 7 3n - 5 3n-2
•"• 5*- 5 + 52 + 53+ + -57^-+

5
,—

J

4 , /3 3 3 3 \ 3n-2

1 3 A 1 1 1 \ 3n-

, 3 *
"

= 1 +

_2
f
5
7-"1

"

+5«-»j " "~5«~

'>-i
D N

' 3 / 1\ 3«-2
= 1 + I (1 "

5
—

J
- -5.-

7 12w + 7
_

~ 4
~ 4 . 5*

;

35 12/t+7
•'* 6 ~ 16 16 .

5"-1
'

EXAMPLES. V. b.

1. Sum 1 4- 2a 4- 3a2+ 4a3 4- . . . to n terms.

3 7 15 31
2. Sum 1 + - 4- 77. + ^, + c^rr. + . . • to infinity.

4 lb 64 zoo

3. Sum 1 + 3.r+ 5d'2+ 7o?+ 9.z4+ ... to infinity.

-, 2 3 4
4. Sum 1 + - 4- -

2
+ -3+ . . . to n terms.

3 5 7
5. Sum 1 + + -7 + Q + ... to infinity.

2 4 o

6. Sum l + 3^+ 6 lf
2
4-10ji>3 4-... to infinity.

7. Prove that the (n + l)
th term of a G. P., of which the first term

is a and the third term b, is equal to the (2»+l)th term of a G. P. of

which the first term is a and the fifth term 6.

8. The sum of 2n terms of a G. P. whose first term is a and com-

mon ratio r is equal to the sum of n of a G. P. whose first term is b and
common ratio r1

. Prove that b is equal to the sum of the first two

terms of the first series.
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9. Find the sum of the infinite series

l + (l + b)r + (l + b + b2)r2 + {l + b + b2+ b3)r3 +...,

r and b being proper fractions.

10. The sum of three numbers in G. P. is 70 ; if the two extremes
be multiplied each by 4, and the mean by 5, the products are in A. P.

;

find the numbers.

11. The first two terms of an infinite G. P. are together equal to 5,

and every term is 3 times the sum of all the terms that follow it; find

the series.

Sum the following series :

12. .r+a, ,v
2+ 2<x, .r

3+ 3a. .. to u terms.

13. x (x + if) + x2 (x2 + y
2
) + a? (a*3+if) + . . . to n terms.

14. «+ o j 3« - -
, ha +— +... to 2p terms.

2 3 2 3 2 3
15. 3 + ^2 + 33 + 34 + 35 + p+ -- to mfinity-

16.
454545 . „ .,

7
~

72 + 73
-

74 + 75
- 76 +

-

to llifinity-

17. If a, b, c, d be in G. P., prove that

(b - cf+ (c- a)2+ (d - b)2= {a- d)2
.

18. If the arithmetic mean between a and b is twice as great as the
geometric mean, shew that a : 6 = 2 + ^/3 : 2-^3.

19. Find the sum of n terms of the series the rth term of which is

(2r-f-l)2'\

20. Find the sum of 2n terms of a series of which every even term
is a times the term before it, and every odd term c times the term
before it, the first term being unity.

21. If Sn denote the sum of n terms of a G. P. whose first term is

a, and common ratio r, find the sum of Slf S3 ,
/8'
5 ,.../8

r

2B_ 1.

22. If Sv JS2 , S3,...SP are the sums of infinite geometric series,

whose first terms are 1, 2, 3,..,j2, and whose common ratios are

2' 3' 4 '
* '

' ^Ti
respectively,

prove that &\ + S2+S3+ . . . + Sp=f (p+ 3).

23. If r < 1 and positive, and m is a positive integer, shew that

(2»i + l)rwl (l-r)<l-r2wi + 1
.

Hence shew that nrn is indefinitely small when n is indefinitely great.



CHAPTER VI.

HARMONICAL PROGRESSION. THEOREMS CONNECTED WITH

THE PROGRESSIONS.

61. DEFINITION. Three quantities a, b, c are said to be in

Harmonical Progression when - =
7
— .

c o — c

Any number of quantities are said to be in Harmonical
Progression when every three consecutive terms are in Har-

monical Progression.

62. The reciprocals of quantities in Harmonical Progression

are in A rithmetical Progression.

By definition, if «, b, c are in Harmonical Progression,

a a — b

~c^~b^~c'
}

.'. a(b — c) = c (a — b),

dividing every term by abc,

1111
c b b a'

which proves the proposition.

63. Harmonical properties are chiefly interesting because

of their importance in Geometry and in the Theory of Sound :

in Algebra the proposition just proved is the only one of any

importance. There is no general formula for the sum of any

number of quantities in Harmonical Progression. Questions in

H. P. are generally solved by inverting the terms, and making use

of the properties of the corresponding A. P.
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64. Tofind the harmonic 7tiean between two given quantities.

Let a, b be the two quantities, H their harmonic mean;

then - , -~
, T are in A. P.

;

a 11 b

1 I I I
''11 a~b IV

2 11
H~ a

+
&'

,, 2ab

a + b

Example. Insert 40 harmonic means between 7 and ^

.

Here 6 is the 42na term of an A. P. whose first term is -
; let d be the

common difference ; then

6 = ^ + 41d ; whence d = -.

2 3 41
Thus the arithmetic means are - , - ,

---
; and therefore the har-

7
monic means are 3£, 2\,...~.

*

65. If A, G> II be the arithmetic, geometric, and harmonic

means between a and b, we have proved

a + b
A = ~Y~ (!)•

G = Jab (2).

H=^ (3).a+b v '

_, „ . Tr a + b 2ab 7 ~2
Therefore All = —-— .

T = ab = G :

2 a+b

that is, G is the geometric mean between A and //.

From these results we see that

. ~ a + b ,-z- a + b- 2JabA - G=-~-Jab = g-^_
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which is positive if a and b are positive; therefore the arithmetic
mean of any two positive quantities is greater than their geometric
mean.

Also from the equation G*--A1I, we see that G is inter-

mediate in value between A and 11; and it lias been proved that
A > G, therefore G > II ; that is, the arithmetic, geometric, and
harmonic means between any tioo positive quantities are in descending
order of magnitude.

66. Miscellaneous questions in the Progressions afford scope
for skill and ingenuity, the solution being often neatly effected
by some special artifice. The student will find the following
hints useful.

1. If the same quantity be added to, or subtracted from, all

the terms of an A P., the resulting terms will form an A. P. with
the same common difference as before. [Art. 38.]

2. If all the terms of an A.P. be multiplied or divided by
the same quantity, the resulting terms will form an A. P., but
with a new common difference. [Art. 38.]

3. If all the terms of a G.P. be multiplied or divided by the
same quantity, the resulting terms will form a G.P. with the
same common ratio as before. [Art. 51.]

4. If a, b, c, d... are in G.P., they are also in continued pro-

portion^ since, by definition,

a b c 1

bed r
'

Conversely, a series of quantities in continued proportion may
be represented by x, aw, xr'

2

,

Example 1. If a 2
, b2 , c

2 are in A. P., shew that b + c, c + a, a + b are

in H. P.

By adding ab + ac + bc to each term, we see that

a* + ab + ac + bc, b2 + ba + bc + ac, c'
2 + ca + cb + ab are in A.P.

;

that is {a + b) (a + c), {b + c)(b + a), (c + a) (c + b) are in A. P.

.-., dividing each term by (a + b)(b + c) (c + a),

-. , . are m A. P.

:

b + c c + a a + b

that is, b + c, c + a, a + b are in H. P

H. H. A. 4
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Example 2. If I the last term, d tlie common difference, and s the sum
of n terms of an A. P. be connected by the equation Sds={d + 2l) 2

,
prove that

d= 2a.

Since the given relation is true for any number of terms, put n= 1 ; then

a= l= s.

Hence by substitution, 8ad= {d + 2a) 2
,

or (d-2ay- = 0;

.-. d— 2a.

Example 3. If the p
th

, q
th

, r
th

, s
th terms of an A. P. are in G. P., shew that

p -
q, q - r, r - s are in G. P.

"With the usual notation we have

a + (p-l)d_ a + (g-l)d_a+ (r-l)d

^V(q^lJd-^T¥^l)~d-aT(^l)d
LAlt - bb

- (4)J '

.*. each of these ratios

{a + (p-l)d}-{a+(q-l)d\ _ {a+ (q- 1) d] - \a + (r- 1) d}

~ {a + (q - 1) d\ - {a+ (r- 1) d) " {a+(r - 1) d] - {a + {s - 1) d\

=
p-q^q-r
q-r r — 8

'

Hence p - q, q - r, r - s are in G.P.

67. The numbers 1, 2, 3, are often referred to as the

natural numbers ; the nth term of the series is n, and the sum of

the first n terms is - (n +1).

68. To find the sum of the squares of the first n natural

numbers.

Let the sum be denoted by S ; then

£=l 2 + 2
2 + 3' + +n2

.

We have n3 - (n - l)
a = 3n2 - 3n+ 1

;

and by changing n into n—l,

(n _ \y _ (n _ 2)
3 = 3(™ - l)

2 - 3(w - 1) + 1
;

similarly (w - 2)
3 - (71 - 3)

3 = 3(w - 2)
2 - 3(n - 2) + 1 ;

3
3 -2 3 =3.3 2 -3.3+l;

2
3 -l 3 =3.2 2 -3.2 + l;

1
3 -03 =3.1 2 -3.1 + 1.
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Hence, by addition,

^3 = 3(l
2 + 2

3 + 3
2
+ ...+»')-3(l + 2 + 3 + ...+n) + *

3n(n + l)
— 6b — + it.

a

. •. 3aS = n - n + -±-—
a

= n(n + 1) (n — 1 4- ;;);

. „ n(n+ l)(2n + l)
•• S= 6

C9. To fiml the sum of the cubes of the frst n natural
numbers.

Let the sum be denoted by S ',
then

£=l 3 +2 3 + 3
3 + +n\

We have n* - (n - l)
4 = 4?i

3 - Gn2 + 4n - 1
;

(n - 1 )

4 - (?* - 2)
4 = 4 (n - 1

)

3 - 6 (n - 1)
8 + 4 (n - 1) - 1

;

(
w _ 2)

4 -
(
w - 3)« = 4(ra- 2)

3 - 6 (n- 2)
2 + 4 (n - 2) - 1

;

3
4 -2 4 = 4.3 3 -6.3 2 + 4.3-l;

2
4 -l 4 = 4.2 3 -G.2 2 + 4.2-l;

1
4 -0 4 = 4.1 3 -6.1 2 + 4.1-1.

Hence, by addition,

w4 = 4#-6(l 2 + 2 2 +...+?i2

) + 4(l +2 + .. + 7i)-n;

.\ 4S= n4 + n + 6(l 2 + 2
2 +...+7t2)-±(\+2 + ...+n)

= n* + 7i + 7i (n+ 1) (2n+ 1) -2n(7i + 1)

= 7i (71 + 1) (?r -7i+\ + 2n+\-2)
= 7i (n + 1 )

(?r + n)
;

, g _ w'(n + l)
a

_fW (n+l) )'

' •
*
" 4 ~ ( 2 J

*

Tims ^Ae s?<m o/* Me cz^es of the f7'st n natural 7iumhers is

equal to the squa7'e of the siwi of these 7iumbers.

The formulae of this and the two preceding articles may be

applied to find the sum of the squares, and the sum of the cubes

of the terms of the series

«, a + d, a + 2d,

4—2
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70. In referring to the results we have just proved it will

be convenient to introduce a notation which the student will fre-

quently meet with in Higher Mathematics. We shall denote the

series

1 + 2 + 3 + . . . + n by 2,n

;

1* + 2* + 3* + ... +na by %n*

;

l
3 + 23 + 33 +... +«8 by 2n3

;

where 2 placed before a term signifies the sum of all terms of

which that term is the general type.

Example 1. Sum the series

1 . 2 + 2 . 3 + 3 . 4 + . . .to n terms.

The wth term=ra(n+l)=n2+«; and by writing down each term in a
similar form we shall have two columns, one consisting of the first n natural

numbers, and the other of their squares.

.•. the sum= 2m2 + 2?i

_w(m+1) (2m + 1) n(n + l)
T

6 ' 2

n(n+l) j2n+l )

n(n+ l)(n+2)

3

Example 2. Sum to n terms the series whose Mth term is 2'1_1 + 8m3 - 6m2
.

Let the sum be denoted by S ; then

S= 2 2»-1 + 82>i3 -62n2

_ 2" 1 8m2 (m + 1)
2
_ 6m

(
m+1)(2m + 1)

" 2 - 1
+ ~~

4~
6

= 2» - 1+« (m + 1) {2m (m + 1) - (2m + 1)

}

= 2'l -l + n(n + l)(2n2 -l).

EXAMPLES. VI. a.

1. Find the fourth term in each of the following series

:

(1) 2, 2J,
3i,...

(2) 2, 21, 3,...

(3) 2, 2f,
3i,...

2. Insert two harmonic means between 5 and 11.

2 2
3. Insert four harmonic means between - and — .

o 1«3
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4. If 12 and 9 :l are the geometric and harmonic means, respect-
ively, between two numbers, find them.

5. If the harmonic mean between two quantities is to their geo-

metric means as 12 to 13, prove that the quantities are in the ratio

of 4 to 9.

6. If a, b, c be in H. P., shew that

a : a — b = a + c : a— c.

7. If the iii
lh term of a H. P. be equal to n, and the ulh term be

equal to m, prove that the (m+ n)th term is equal to
m n

m + n

8. If the p
th

, <7
th

, rth terms of a H. P. be a, b, c respectively, prove
that (<j - r) be + (r —p) ca+ (p-q) ub= 0.

9. If b is the harmonic mean between a and c, prove that

1 111
j- + , = - + - .

o — a b — c a c

Find the sum of n terms of the series whose nth term is

10. 3n*-n. 11. ns+^n. 12. »(»+2).

13. »2 (2»+3). 14. 3" -2". 15. 3 (4' l+ 2;i
2)-4/i :J

.

16. If the (m+iy\ (?^+l) th
, and (r+ l)

th terms of an A. P. are in

( i. P., and on, n
y
r are in H. P., shew that the ratio of the common

2
difference to the first term in the A. P. is — .

n

17. If I, m, n are three numbers in G. P., prove that the first term
of an A. P. whose £

th
, mth

, and ?i
th terms are in H. P. is to the common

difference as m-\-\ to 1.

18. If the sum of n terms of a series be a+ bu+ cri2, find the nth

term and the nature of the series.

19. Find the sum of n terms of the series whose nth term is

4?i(?i2 +l)-(6>i2 -fl).

20. If between any two quantities there be inserted two arithmetic

means Au A ; two geometric means Gly G2 ; and two harmonic means
H

1 , 7/2 ; shew that 6^0',, : II
1
H.2= A l

+A 2 : I^+ IL,.

21. If p be the first of n arithmetic means between two numbers,

and q the first of n harmonic means between the same two numbers,

prove that the value of q cannot lie between p and f—
J
p.

22. Find the sum of the cubes of the terms of an A. P., and shew
that it is exactly divisible by the sum of the term-.
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Piles of Shot and Shells.

71. To find the number of shot arranged in a complete

pyramid on a square base.

Suppose that each side of the base contains n shot ; then the

number of shot in the lowest layer is n2
\ in the next it is (n—l) 2

;

in the next (n-2) 2
; and so on, up to a single shot at the

top.

.-. S^n2 + (n-l) 2 + (n-2) 2
+... + l

=
n(n+l)(2n + l)

6

72. To find the number of shot arranged in a complete

pyramid the base of which is an equilateral triangle.

Suppose that each side of the base contains n shot ; then the

number of shot in the lowest layer is

n + (n - 1) + (n - 2) + + 1
j

xi • n(n + 1) 1 , 2
that is, —V« or - [n + n)

.

— —

In this result write n — 1, » — 2, for n, and we thus obtain

the number of shot in the 2nd, 3rd, layers.

.-. S=i($n* + 2,n)

M
>(n + l)(» + 2)

[Art7a]

73. To find the number of shot arranged in a complete

pyramid the base of which is a rectangle.

Let m and n be the number of shot in the long and short side

respectively of the base.

The top layer consists of a single row of m — (n — l), or
m — n+1 shot

;

in the next layer the number is 2 (in — n + 2);

in the next layer the number is 3 (in — n + 3)

;

and so on
;

in the lowest layer the number is n (m — n + n).



PILES OF SHOT AND SHELLS. 55

.-. S= (m -01 + 1) + *2(m-n + 2) + 3(w-w + 3) + ... +n(rn-n + n)

= (m - n) (1 + 2 + 3 + ... + n) + (l
2 + 2

2 + 3
s + ... + n2

)

(wi - n) n (n + 1 ) w (n + 1) (2n +1)
2

+
6

=
n

(
n + 1

){3(m-n) + 2n + l}

_n(n + l) (3m- n+ 1)=
6

'

74. To find the number of shot arranged in an incomplete

2>yramid the base of which is a rectangle.

Let a and b denote the number of shot in the two sides of the
top layer, n the number of layers.

In the top layer the number of shot is ab
;

in the next layer the number is (a + 1) (6 + 1)

;

in the next layer the number is (a + 2) (b + 2) \

and so on

;

in the lowest layer the number is (« + n -- 1) (b + n — 1)

or ab + (a + b)(n-l) + ()i-l)
2

.

.-. S = abn + (a + 6) % (n- 1) + % (n- Vf

= abn + ("-l)w(a + 6)
+ (

n-l)n(2 .n-l + 1

)

2 6

= | {6ab + 3 (a + b) (n - 1) + (w - 1) (2m - 1)}.

75. In numerical examples it is generally easier to use the

following method.

Example. Find the number of shot in an incomplete square pile of 16

courses, having 12 shot in each side of the top.

If we place on the given pile a square pile having 11 shot in each side of

the base, we obtain a complete square pile of 27 courses;

and number of shot in the complete pile = ^ = <)'.)30
;

[Art. 7 1
.]

11 x 12 x 23
also number of shot in the added pile= „ = 506;

.*. number of shot in the incomplete pile =6424.
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EXAMPLES. VI. b.

Find the number of shot in

1. A square pile, having 15 shot in each side of the base.

2. A triangular pile, having 18 shot in each side of the base.

3. A rectangular pile, the length and the breadth of the base con-
taining 50 and 28 shot respectively.

4. An incomplete triangular pile, a side of the base having 25 shot,

and a side of the top 14.

5. An incomplete square pile of 27 courses, having 40 shot in each
side of the base.

6. The number of shot in a complete rectangular pile is 24395 ; if

there are 34 shot in the breadth of the base, how many are there in its

length ?

7. The number of shot in the top layer of a square pile is 169,

and in the lowest layer is 1089 ; how many shot does the pile contain ?

8. Find the number of shot in a complete rectangular pile of

15 courses, having 20 shot in the longer side of its base.

9. Find the number of shot in an incomplete rectangular pile,

the number of shot in the sides of its upper course being 11 and 18,

and the number in the shorter side of its lowest course being 30.

10. What is the number of shot required to complete a rectangular
pile having 15 and 6 shot in the longer and shorter side, respectively, of

its upper course?

11. The number of shot in a triangular pile is greater by 150 than
half the number of shot in a square pile, the number of layers in each
being the same; find the number of shot in the lowest layer of the tri-

angular pile.

12. Find the number of shot in an incomplete square pile of 16
courses when the number of shot in the upper course is 1005 less than
in the lowest course.

13. Shew that the number of shot in a square pile is one-fourth the
number of shot in a triangular pile of double the number of courses.

14. If the number of shot in a triangular pile is to the number of

shot in a square pile of double the number of courses as 13 to 175 ; find

the number of shot in each pile.

15. The value of a triangular pile of 16 lb. shot is ,£51 ; if the
value of iron be 10s. 6d. per cwt., find the number of shot in the
lowest layer.

16. If from a complete square pile of n courses a triangular pile of
the same number of courses be formed ; shew that the remaining shot
will be just sufficient to form another- triangular pile, and find the
number of shot in its side.
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CHAPTER VII.

SCALES OF NOTATION.

76. The ordinary numbers with which we are acquainted in

Arithmetic are expressed by means of multiples of powers of 10;
for instance

25-2 x 10 + 5;

4705 = 4 x 103 + 7 x 10 2 + x 10 + 5.

This method of representing numbers is called the common or

denary scale of notation, and ten is said to be the radix of the

scale. The symbols employed in this system of notation are the

nine digits and zero.

In like manner any number other than ten may be taken as

the radix of a scale of notation ; thus if 7 is the radix, a number
expressed by 2453 represents 2x7 3 + 4x7" + 5x7 + 3; and in

this scale no. digit higher than 6 can occur.

Again in a scale whose radix is denoted by r the above
number 2453 stands for 2r3 + 4?

,2 + hr + 3. More generally, if in

the scale whose radix is r we denote the digits, beginning with

that in the units' place, by a
tt

, a,, a
2
,...aj then the number so

formed will be represented by

a r
n
+ a ,r

n~ 1 + a y~~ + . . . + a/2 + a,r + a,

where the coefficients a , a ,,...«,. are integers, all less than r, of

which any one or more after the first may be zero.

Hence in this scale the digits are r in number, their values

ranging from to r — 1

.

77. The names Binary, Ternary, Quaternary, Quinary, Senary,

Septenary, Octenary, Nonary, Denary, Undenarv, and Duodenary
are used to denote the scales corresponding to the values fae»,

three,... twelve of the radix.
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In the undenary, duodenary, . . . scales we shall require symbols
to represent the digits which are greater than nine. It is unusual
to consider any scale higher than that with radix twelve ; when
necessary we shall employ the symbols t, e, T as digits to denote
' ten ',

' eleven ' and ' twelve '.

It is especially worthy of notice that in every scale 10 is the
symbol not for ' ten ', but for the radix itself.

78. The ordinary operations of Arithmetic may be performed
in any scale ; but, bearing in mind that the successive powers of

the radix are no longer powers of ten, in determining the carrying

figures we must not divide by ten, but by the radix of the scale

in question.

Example 1. In the scale of eight subtract 371532 from 530225, and
multiply the difference by 27.

530225 136473
371532 27

136473 1226235
275166

4200115

Explanation. After the first figure of the subtraction, since we cannot
take 3 from 2 we add 8 ; thus we have to take 3 from ten, which leaves 7 ; then
6 from ten, which leaves 4 ; then 2 from eight which leaves 6 ; and so on.

Again, in multiplying by 7, we have

3x7= twenty one=2x8 + 5;

we therefore put down 5 and carry 2.

Next 7x7 + 2= fifty one= 6x8 + 3;

put down 3 and carry 6 ; and so on, until the multiplication is completed.

In the addition,

3 + 6= nine= lx8 + l;

we therefore put down 1 and carry 1.

Similarly 2 + 6 + l = nine=l x 8 + 1;

and 6 + l + l = eight = lx8 + 0;

and so on.

Example 2. Divide 15et20 by 9 in the scale of twelve.

9)15<?£20

lee96...G.

Explanation. Since 15 = 1 x T + 5 = seventeen = 1 x9 + 8,

we put down 1 and carry 8.

Also 8 x T + e = one hundred and seven = e x 9 + 8 ;

we therefore put down e and carry 8; and so on.
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Example 3. Find the .square root of 442641 in the scale of seven.

134

442641(646
34

1026
G02

1416112441
12441

EXAMPLES. Vila.

1. Add together 23241, 4032, 300421 in the scale of five.

2. Find the sum of the nonary numbers 303478, 150732, 2G4305.

3. Subtract 1732765 from 3673124 in the scale of eight.

4. From 3^756 take 2e46t2 in the duodenary scale.

5. Divide the difference between 1131315 and 235143 by 4 in the
scale of six.

6. Multiply 6431 by 35 in the scale of seven.

7. Find the product of the nonary numbers 4685, 3483.

8. Divide 102432 by 36 in the scale of seven.

9. In the ternary scale subtract 121012 from 11022201, and divide

the result by 1201.

10. Find the square root of 300114 in the quinary scale.

11. Find the square of tttt in the scale of eleven.

12. Find the G. C. M. of 2541 and 3102 in the scale of seven.

13. Divide 14332216 by 6541 in the septenary scale.

14. Subtract 20404020 from 103050301 and find the square root of

the result in the octenary scale.

15. Find the square root of ce^OOl in the scale of twelve.

16. The following numbers are in the scale of six, find by the ordi-

nary rules, without transforming to the denary scale :

(1) the G. C. M. of 31141 and 3102

;

(2) the L. C. M. of 23, 24, 30, 32, 40, 41, 43, 50.

79. To express a given integral number in any proposed scale.

Let iV be the given number, and r the radix of the proposed

scale.

Let a
u , an a

2
,...a

t

be the required digits by which iV is to be

expressed, beginning with that in the units' place; then

N= a r" + a ,r"
_1
+ ... + ar~ + a.r + a

lt
.

n n — 1 2 10
We have now to find the values of « , a,, "_...",,
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Divide N by r, then the remainder is a , and the quotient is

a r"
l + a

n 71—1
r
n 2+ ... +a r + a

l
.

If this quotient is divided by r, the remainder is a
i ;

if the next quotient a
2 ;

and so on, until there is no further quotient.

Thus all the required digits a , a
x

, ag1 ...an are determined by

successive divisions by the radix of the proposed scale.

Example 1. Express the denary number 5213 in the scale of seven.

7)5213

7)7447 5

7)106. 2

7)15. 1

2 1

Thus 5213 = 2x74 +lx73 + lx7- + 2x7 + 5;

and the number required is 21125.

Example 2. Transform 21125 from scale seven to scale eleven.

e)21125

e)1244T t

~e)Gl-

3. t

.-. the required number is 3t0t.

Explanation. In the first line of work

21 = 2x7+l=fifteen = lx<? + 4;

therefore on dividing by e we put down 1 and carry 4.

Next 4x7 + 1 = twenty nine= 2 x e + 7 ;

therefore we put down 2 and carry 7 ; and so on.

Example 3. Reduce 7215 from scale twelve to scale ten by working in

scale ten, and verify the result by working in the scale twelve.

r 7215 f)7215 1

JL2 «)874. 1

.4

.2

In scale

of ten
-

80

12

1033
12

t)t^.

t)10.

1.

In scale

of twelve

J

1 12401

Thus the result is 12401 in each case.

Explanation. 7215 in scale twelve means 7 x 123+ 2 x 122 + 1 x 12 + 5 in
scale ten. The calculation is most readily effected by writing this expression
in the form [{(7 x 12 + 2) } x 12 + 1] x 12 + 5 ; thus we multiply 7 by 12, and
add 2 to the product; then we multiply 86 by 12 and add 1 to the product;
then 1033 by 12 and add 5 to the product.
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80. Hitherto we have only discussed whole numbers; but
fractions may also be expressed in any scale of notation

; thus

2 5
•25 in scale ten denotes — +—

,

;

10 10*'

2 5
•25 in scale six denotes -= + ^ ;

G

2 5
•25 in scale r denotes —h — .

r r

Fractions thus expressed in a form analogous to that of

ordinary decimal fractions are called radix-fractions, and the point

is called the radix-point. The general type of such fractions in

scale r is

~ 3 ~ 3
~

>

r r r

where 6 , b
2

, 6
a

, ... are integers, all less than r, of which any one

or more may be zero.

81. To express a given radixfraction in any proposed scale.

Let F be the given fraction, and r the radix of the proposed

scale.

Let b , b , b
3
,... be the required digits beginning from the

left ; then

F J-X +
b
A+

b
3̂+

r r r

We have now to find the values of 6p b
2 , 6

3 ,

Multiply both sides of the equation by r ; then

rF=b+-2 +
h

-l+ ;

Hence b
l

is equal to the integral part of rF ; and, if we denote

the fractional part by F
x

, we have

H-i. + J +

Multiply again by r\ then, as before, b is the integral part

of rF
x
; and similarly by successive multiplications by r, each of

the digits may be found, and the fraction expressed in the pro

posed scale.
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If in the successive multiplications by r any one of the

products is an integer the process terminates at this stage, and

the given fraction can be expressed by a finite number of digits.

But
&
if none of the products is an integer the process will never

terminate, and in this case the digits recur, forming a radix-

fraction analogous to a recurring decimal.

13
Example 1. Express -^ as a radix fraction in scale six.

13
ft

13x3 7.

16
x6= -8-= 4 +

8'

7 a 7x3 Kj.
1

1 a lx3 I..
1

^x6= 3.

4 5 13
.-. the required fraction = g + ^ + p + Qi

= •4513.

Example 2. Transform 16064-24 from scale eight to scale five.

We must treat the integral and the fractional parts separately,

5)16064 '24

5)2644 ... 5

5)440...

4

1*44

5)71. ..3 J>_
5)13... 2 2-64

2...1 £_
4-04

5_

0-24

After this the digits in the fractional part recur; hence the required

number is 212340-1240.

82. In any scale of notation of which the radix is r, the sum
of the digits of any whole number divided by r - 1 will leave the

same remainder as the whole number divided by r — 1.

Let N denote the number, a , a lt a
2 ,

a
n
the digits begin-

ning with that in the units' place, and S the sum of the digits;

then
N = a

Q
+ a

x
r + a

2
r

2 + + a„_/,~ 1 + arn
;

S=a + a
x
+a

2
+ + a

n _ l
+ a

n

r.tf-S=a
1
(r-l) + a

2
(r°--l)+ + •„_, (i*- - 1) + «, (f - 1).
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Now every term on the right hand side is divisible by r — 1 •

iV-S
.

*
. =- — an integer

;r- 1
6 y

that is, -=/ +
r - 1 r - 1

'

when; / is some integer j which proves tlie proposition.

Hence a number in scale r will be divisible by ?• — 1 when the
sum of its digits is divisible by r — 1.

83. By taking ?-=10 we learn from the above proposition
that a number divided by 9 will leave the same remainder as the
sum of its digits divided by 9. The rule known as " casting out
the nines " for testing the accuracy of multiplication is founded
on this property.

The rule may be thus explained :

Let two numbers be represented by da + b and 9c -f d, and
their product by P; then

P^Slac + %c + 9ad + bd.

Hence — has the same remainder as -^ ; and therefore the

s?nn of the digits of /*, when divided by 9, gives the same
remainder as the sum of the digits of bd, when divided by 9. If

on trial this should not be the case, the multiplication must have
been incorrectly performed. In practice b and d are readily

found from the sums of the digits of the two numbers to be
multiplied together.

Example. Can the product of 31256 and 8127 be 263395312 ?

The sums of the digits of the multiplicand, multiplier, and product are 17,

21, and 31 respectively; again, the sums of the digits of these three numbers
are 8, 3, and 7, whence M = 8x3 = 24, which has 6 for the sum of the

digits; thus we have two different remainders, 6 and 7, and the multiplication

is incorrect.

84. If N denote any number in the scale of'r, and D denote

the difference, supposed positive, between the sums of the digit* in the

odd and the even places; then N — D or N + D is a multiple, of
r+ 1.
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Let a , «!, a
,

a
n
denote the digits beginning with that

in the units' place; then

JV= a + a,r + a r2 + ar* + + a ,r"
-1

+ a r".

.-. Ar-a + a
A
-a

2
+ a

3
- ...=<*, (r+1) + «

2
(r

2 - 1) + a
3
(r

3 + 1) + ...;

and the last term on the right will be a
w
(r"+l) or a

n
(r

n — 1)

according as n is odd or even. Thus every term on the right is

divisible by r + I ; hence

^ ! % i '- = an mteo-er.
r + 1

°

NOW a0~ a
}

+fl2~ CC
3
+ —^D)

.'. =— is an integer;

which proves the proposition.

Cor. If the sum of the digits in the even places is equal to

the sum of the digits in the odd places, D = 0, and N is divisible

by r + 1.

Example 1. Prove that 4 •41 is a square number in any scale of notation
whose radix is greater than 4.

Let r be the radix ; then

4-41 = 4 + - + i=(2 + -Y;
r rz \ rj

thus the given number is the square of 2*1.

Example 2. In what scale is the denary number 2-4375 represented by
213?

Let r be the scale ; then

13 7
2+ - + 2=2-4375=2-^;

r r- 16

whence " 7r2 - 16r-48= ;

that is, (7r+12)(/--4) = 0.

Hence the radix is 4.

Sometimes it is best to use the following method.

Example 3. In what scale will the nonary number 25607 be expressed
by 101215 ?

The required scale must be less than 9, since the new number appears
the greater ; also it must be greater than 5 ; therefore the required scale
must be 6, 7, or 8; and by trial we find that it is 7.
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Example 4. By working in the duodenary scale, find the height of a
rectangular solid whose volume is 364 cub. ft. 1048 cub. in., and the area of
whose base is 46 sq. ft. 8 sq. in.

The volume is 364-^i? cub. ft., which expressed in the scale of twelve is

264-734 cub. ft.

The area is 46^ 4 sq. ft., which expressed in the scale of twelve is 3<-08.

We have therefore to divide 264*734 by St-OS in the scale of twelve.

3*08)26473-4(7-e
22*48

36274
36274

Thus the height is 7ft. lliu.

EXAMPLES. VII. b.

1. Express 4954 in the scale of seven.

2. Express 624 in the scale of five.

3. Express 206 in the binary scale.

4. Express 1458 in the scale of three.

5. Express 5381 in powers of nine.

6. Transform 212231 from soale four to scale five.

7. Express the duodenary number 398e in powers of 10.

8. Transform 6£12 from scale twelve to scale eleven.

9. Transform 213014 from the senary to the nonary scale.

10. Transform 23861 from scale nine to scale eight.

11. Transform 400803 from the nonary to the quinary scale.

12. Express the septenary number 20665152 in powers of 12.

13. Transform ttteee from scale twelve to the common scale.

3
14. Express — as a radix fraction in the septenary scale.

15. Transform 17 "15625 from scale ten to scale twelve.

16. Transform 200 "2 11 from the ternary to the nonary scale.

17. Transform 71*03 from the duodenary to the octenary scale.

1552
18. Express the septenary fraction —— as a denary vulgar fraction

in its lowest terms.

19. Find the value of *4 and of '42 in the scale of seven.

20. In what scale is the denary number 182 denoted by 222?

25
21. In what scale is the denary fraction -— denoted by -0302?

H. H. A. 5
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22. Find the radix of the scale in which 554 represents the square

of 24.

23. In what scale is 511197 denoted by 1746335 ?

24. Find the radix of the scale in which the numbers denoted by

479, 698, 907 are in arithmetical progression.

25. In what scale are the radix-fractions *16, "20, '28 in geometric

progression ?

26. The number 212542 is in the scale of six; in what scale will it

be denoted by 17486?

27. Shew that 148'84 is a perfect square in every scale in which the

radix is greater than eight.

28. Shew that 1234321 is a perfect square in any scale whose radix

is greater than 4 ; and that the square root is always expressed by the

same four digits.

29. Prove that 1-331 is a perfect cube in any scale whose radix is

greater than three.

30. Find which of the weights 1, 2, 4, 8, 16,... lbs. must be used to

weigh one ton.

31. Find which of the weights 1, 3, 9, 27, 81,... lbs. must be used

to weigh ten thousand lbs., not more than one of each kind being used

but in either scale that is necessary.

32. Shew that 1367631 is a perfect cube in every scale in which the

radix is greater than seven.

33. Prove that in the ordinary scale a number will be divisible by
8 if the number formed by its last three digits is divisible by eight.

34. Prove that the square of rrrr in the scale of s is rm^OOOl, where

q, r, s are any three consecutive integers.

35. If any numberN be taken in the scale ?*, and a new number N'
be formed by altering the order of its digits in any way, shew that the

difference between N and N' is divisible by r— 1.

36. If a number has an even number of digits, shew that it is

divisible by r+1 if the digits equidistant from each end are the same.

37. If in the ordinary scale St
be the sum of the digits of a number

JV, and 3#2
be the sum of the digits of the number 3iV, prove that the

difference between aS^ and >S'2
is a multiple of 3.

38. Shew that in the ordinary scale any number formed by
writing down three digits and then repeating them in the same order
is a multiple of 7, 11, and 13.

39. In a scale whose radix is odd, shew that the sum of the
digits of any number will be odd if the number be odd, and even if

the number be even.

40. If n be odd, and a number in the denary scale be formed
by writing down n digits and then repeating them in the same order,

shew that it will be divisible by the number formed by the n digits,

and also by 9090...9091 containing n- \ digits.



CHAPTER VIII.

SURDS AND IMAGINARY QUANT1T1KS.

85. In the Elementary Algebra, Art. 272, it is proved that

the denominator of any expression of the form -rr r- can be
Jb + Jc

rationalised by multiplying the numerator and the denominator
by Jb — Jc, the surd conjugate to the denominator.

Similarly, in the case of a fraction of the form
Jb + Jc + Jd

'

where the denominator involves three quadratic surds, we may by
two operations render that denominator rational.

For, first multiply both numerator and denominator by

Jb + Jc — Jd; the denominator becomes (Jb + Jc)
2 — (Jd)

2
or

b + c - d + 2 Jbe. Then multiply both numerator and denominator
by (b + c - d) — 2 Jbe; the denominator becomes (b + c - d)

2 — Abe,

which is a rational quantity.

Example. Simplify
12

3+^/5-2^/2

The expression - 12
(
3 + y/5 +V*)me expression _

(3+^5)S _ (V2)»

^ 12(3 + ^/5 + 2^/2)

6 + 6^5

2 (3

+

v/5+ 2^/2)^5-1)
U/5+l)U/5-l)

2+V5+V10-V2

= 1+^5+^/10-^2.

5—2
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86. To find the factor which will rationalise any given bino-

mial surd.

Case I. Suppose the given surd is £]a - $b.

Let ZJa = x, ?Jb = y, and let n be the l.c.m. of p and q ; then

xn and y
n
are both rational.

Now xn — y
n

is divisible by x - y for all values of n, and

ar- _ y" = (x-y) {x
n ~' +xn~2

y + xnSf + + y"" 1

).

Thus the rationalising factor is

.X'""
1 + xn ~ 2

y + xn~y + + y"~ l

;

and the rational product is xn — y'\

Case II. Suppose the given surd is pJa + fjb.

Let x, y, n have the same meanings as before; then

(1) If n is even, xn — y" is divisible by x + y, and

xn - y
n = (x + y) (x

n~ l - xn ~ 2
y + + xf~* - y"" 1

).

Thus the rationalising factor is

ur l -ary + + ay"-'-
3r 1

;

and the rational product is x" — y
n

.

(2) If n is odd, x" + y" is divisible by x + y, and

xn + y
n = (x + y) (x

n~ x - xnSj + - xyn ~ 2 + y
n ~').

Thus the rationalising factor is

xn~ 1 -xn~ 2y+ -xyn- 2 + y"- 1

;

and the rational product is x" + y
n

.

Example 1. Find the factor which will rationalise ^/S + ^/5.

i i

Let x= 32
, y = 55

; then xb and y
6 are both rational, and

xe - y
6 — (x + y) (x5 - x*y + xhj2 - xhj3 + xyi - y

5
) ;

thus, substituting for x and y, the required factor is

541 3223 14 5

32 - 32 . 53+ 32 . 53 - 32 . 53+ 32 . 53 - 53,

5 13 2 14 5

or 32-9. 55 + 32~. 53-15 + 32. 53-55
;

6 6

and the rational product is 32 - 5s"= 33 - 52= 2.
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Example 2. Express (&+&) * \55-9s)

as an equivalent fraction with a rational denominator.

i i i

To rationalise the denominator, which is equal to 5" -3*, put 52 = x,

3 4 = y ; then since x4 -y A= [x - y) (x* + xhj + xy 2 + if')

3 2 1 12 3

the required factor is 5- + 52
. 3-* + 5 ]

. 3* + 3~4
;

4 4

and the rational denominator is 5 2 - 3-*= 52 - 3 = 22.

/ i i\ / 3 2 1 12 3\

+Vl
• V 5

5 + 3V \& + 52
. 3^ + 5- .

3~4 + 3

V

.•. the expression = '-—

i

— ' — '

4 3 1 2 2 13 4

_ 52 + 2 . 52 .3j + 2. 5 ,J .34"+2.55 .3 j + 3 t

22

3 1 113
_l l + o2 . 3j + 5.32+52 .3j

11

87. We have shewn in the Elementary Algebra, Art. 277,

how to find the square root of a binomial quadratic surd. We
may sometimes extract the square root of an expression contain-

ing more than two quadratic surds, such as a + Jb + Jc 4- Jd.

Assume Ja + Jb + Jc + Jd = Jx + Jy + Jz j

.'. a + Jb + Jc + Jd = x + y + z + 2 Jxy + 2 Jxz + 2 Jyz.

If then 2 Jxy = Jb, 2 Jxz = Jc, 2 Jyz = Jd,

and if, at the same time, the values of x, y, z thus found satisfy

x + y + z = a, we shall have obtained the required root.

Example. Find the square root of 21 - 4^/5 + 8^/3 - 4^/15.

Assume V21 -V5 +V3 -V15 = slx + Jy - slz \

.'. 21 - 4^5 + 8^/3 - 4J15 = x + y + z + 2Jxy- 2Jxz - 2Jyz.

Put 2jxy = 8JS, 2jxl= 4J15, 2jyz = ±Jo\

by multiplication, xyz= 240 ; that is Jxyz=4s/lo ;

whence it follows that ,Jx = 2j3, Jy = 2, „Jz = s/5.

And since these values satisfy the equation x + y + z = 21, the required

root is 2^3 + 2-^/5.
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88. IfJa, + Jh = x + Jy, then ivill Ja, — Jh = x — Jy,

For, by cubing, we obtain

ci + Jb=x3 + 3x2

^/y + 3xy + y Jy.

Equating rational and irrational parts, we have

a = x3 + 3xy, Jb = 3x2

Jy + y Jy \

.'. a- Jb = x3 - 3x2

Jy + 3xy -y Jy;

that is, Ja - Jb = x— Jy.

Similarly, by the help of the Binomial Theorem, Chap. XIII.

,

it may be proved that if

Ja + Jb = x + Jy, then Ja - Jb = x- Jy,

where n is any positive integer.

89. By the following method the cube root of an expression

of the form a ± Jb may sometimes be found.

Suppose Ja + Jb = x + Jy

;

then Ja- Jb = x- Jy.

.-. Jtf^b=x2 -y (1).

Again, as in the last article,

a = x3 + 3xy (2).

The values of x and y have to be determined from (1) and (2).

In (1) suppose that Ja2 — b=c; then by substituting for y in

(2) we obtain

a = x3 + 3x (x
2 — c)

;

that is, kx3 — 3cx — a.

If from this equation the value of x can be determined by
trial, the value of y is obtained from y = x2 — c.

Note. We do not here assume sjx + sly for the cube root, as in the

extraction of the square root; for with this assumption, on cubing we should
have

a + Jb =xjx + Sxjy + Syjx+ yjy y

and since every term on the right hand side is irrational we cannot equate
rational and irrational parts.
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Example. Find the cube root of 72 - 32x/5.

Assume sf 72 -'62^5 = x - ^/y ;

then ^72 + 32s/5= x + s/y.

By multiplication
, ^5184 - 1024 x 5= a;

2 - y ;

that is, ± = x'--y (1).

Again 72 - 32^/5 = .c
3 - fkcPJy + Sxy - y^'y ;

whence 72 = x3 + 3.t// (2).

From (1) and (2)

,

72 = x :i + Sx (x- - 4)

;

that is, ar
} -3x= 18.

By trial, we find that x= S; hence y = o, and the cube root is 3-^/5.

90. When the binomial whose cube root we are seekhi"
consists of two quadratic surds, we proceed as follows.

Example. Find the cube root of 9N/3 + llv/2.

By proceeding as in the last article, we find that

.-. the required cube root =*J3 ( 1 + * /-
J

= v/3+v/2.

91. We add a few harder examples in surds.

4
'Example 1. Express with rational denominator

NV9-^3 + r
4

The expression = — ^

3 fj - 33 +

1

(J + l)

l33 + l) (33 -3 ri + l)

iM±i]-33 + l
3 + 1 ~ d +1"
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Example 2. Find the square root of

l(x-l) + fj2x<i -7x-i.

The expression = \ {3x - 3 + 2 J(2x + l)(x-4)
}

a

= ±{(2x + l) + {x-±) + 2jc2x + l){x-£)};

hence, by inspection, the square root is

Example 3. Given ^5= 2-23607, find the value of

(5

J2 + J7- 3J5'

Multiplying numerator and denominator by >J2,

^6-2^/5
the expression

2 + ^14-6^/5

n/5-1
2 + 3-^/5

EXAMPLES. Villa.

Express as equivalent fractions with rational denominator

i
1

2
^

L
- 1 +V2-V3'

A
J2+J3-J5'

3.
1-= . 4 ^^

sfa+ s/b+ s/a+ b' *Ja-l-\/2a+ *Ja + l

^10+ ^5-^/3
fi

(j3+ x/5)(j5 + ^/2)

Find a factor which will rationalise

:

i i

7. #3 -a/2. 8. ^/5 + ^/2. 9. 06+6*.

10. N
3/3-l. 11. 2 + 4/7. 12. 4/5-^3.
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Express with rational denominator:

16 */3
17 v 8 + ^4

i«
W

Find the square root of

19. 16-2 N/20-2 v/28 + 2 N/l3.->. 20. 24+4^15-4^21-2^35.
21. G + ,/12-^24-,/8. 22. 5- x/10- N/15 + N/G.

23. a+36+4+4^/a-4^6-2V3oS
24. 21+3 N/8 - 6 N/3 - (5 Jl - v'24 - N/56 + 2 N/21.

Find the eube root of

25. 10+6 JZ. 26. 38+ 17^5. 27. 99-70^/2.

28. 38^14-100^2. 29. 54^3+ 41^5. 30. 135^3-87^6.

Find the square root of

31. a + x+ \J%ax + x2
. 32. 2a - \/3a2 - 2ab - b'

2
.

i i

33. l + «2+ (l+a2+ a4
)
2

. 34. l+(l-«2)" 2
.

35. If a = ——j- , 6 =—-i— , find the value of 7«2 + 1 1 ab - lb'2 .

36. If x

=

jl'jl , y=
S
/|z7^ »

find the value of 3<t
"2 ~ 5jy + 3^-

Find the value of

V26-15J3 / 6 + 2V3
5V2-V38T573' V33-19 N

/3-

1 1 2

39. (28 - 10 N/3)
2 - (7 + 4 v/.3)

"

2
. 40. (26 + 15 sfzf - (26 + 15 N/3)

41. Given s/b = 2-23607, find the value of

lOx/2 N/10 + N/18

N/18 - a/3+V5 N/8 + V3 - V5
'

42. Divide x*+ 1+ 3# #2 by *- 1 + */2.

43. Find the cube root of 9a62 + (b2 + 24a2
)
^6*-3a8

.

44. Evaluate V^'
2 - 1

, when 2.r;=Ja+ -i-

,

x-s/x*-\ \'"

_>

3
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Imaginary Quantities.

92. Although from the rule of signs it is evident that a

negative quantity cannot have a real square rootlet imaginary

quantities represented by symbols of the form J- a, J- 1 are of

frequent occurrence in mathematical investigations, and their

use leads to valuable results. We therefore proceed to explain

in what sense such roots are to be regarded.

When the quantity under the radical sign is negative, we can no

longer consider the symbol J as indicating a possible arithmetical

operation ; but just as Ja may be defined as a symbol which obeys

the relation Ja x Ja = a, so we shall define J— a to be such that

J— a x J— a = - a, and we shall accept the meaning to which this

assumption leads us.

It will be found that this definition will enable us to bring

imaginary quantities under the dominion of ordinary algebraical

rules, and that through their use results may be obtained which

can be relied on with as much certainty as others which depend

solely on the use of real quantities.

93. By definition, J- I x J-I = - 1.

.-. Ja.J-l x Ja. J-l^a^l);

that is, ( Ja . J- 1)
2 = - a.

Thus the product Ja . J— 1 may be regarded as equivalent to

the imaginary quantity J— a.

94. It will generally be found convenient to indicate the

imaginary character of an expression by the presence of the

symbol J- 1 ; thus

JZjtf = Jja2
x (

- 1) = a J7 J-T.

95. We shall always consider that, in the absence of any
statement to the contrary, of the signs which may be prefixed

before a radical the positive sign is to be taken. But in the use

of imaginary quantities there is one point of importance which
deserves notice.
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Since (- a) x (- b) — ab,

by taking the square root, we have

J- a x J- b = ± Jab.

Thus in funning the product of J a and J— b it would appear

that either of the signs + or — might be placed before Jab.
This is not the case, for

J-a x J- b = Ja . J- I x \/b . J-l

= - Jab.

96. It is usual to apply the term c imaginary ' to all expres

sions which are not wholly real. Thus a+bj—l may be taken
as the general type of all imaginary expressions. Here a and b
are real quantities, but not necessarily rational.

97. In dealing with imaginary quantities we apply the laws

of combination which have been proved in the case of other surd

quantities.

Example 1. a + b J - 1 ± (c + d J - 1) = a ± c + (b ± d) J - 1.

Example 2. The product of a 4 b J - f and c +dj-l

= (a + bj^l)(e + dj^l)

= ac - bd 4- (be + ad) */ - 1.

98. If a + b J — 1 = 0, 2/tew a = 0, em(£ b = 0.

For, if a + b J^\ = 0,

then bJ—\=-a;
.'. —6" = a";

.'. a2 + b
2 = 0.

Now «2 and b
2
are both positive, therefore their sum cannot

be zero unless each of them is separately zero ; that is, a — 0,

and 6 = 0.

99. 7f& +bJ^T= c + d lJ~- 1, then a = c, andh <I

For, by transposition, a — c + (b — d) J- 1 = ;

tlierefore, by the last article, a — c = 0, and 6 — ^ = 0;

that is a = c, and 6 </.
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Thus in order that two imaginary expressions may be equal it

is necessary and sufficient that the real parts should be equal, and
the imaginary parts should be equal.

100. Definition. When two imaginary expressions differ

only in the sign of the imaginary part they are said to be

conjugate.

Thus a — b J— 1 is conjugate to a + b J — 1.

Similarly ^2 + 3^-1 is conjugate to J '2 - 3 J- 1.

101. The sum and the product of two conjugate imayinary

expressions are both real.

For
(

a + b J-\ +a-b J-\ = 2a.

Again (a + b J- 1) (a - b J- 1) = a2- (- b
2

)

= a2 + b
2
.

102. Definition. The positive value of the square root of

a2 + b
2
is called the modulus of each of the conjugate expressions

a + b J — 1 and a — b J— 1.

103. The modulus of the product of two imaginary expres-

sions is equal to the product of their moduli.

Let the two expressions be denoted by a+bj— 1 and c+dJ—\.

Then their product = ac — bd + (ad + bc) J — 1, which is an
imaginary expression whose modulus

= J(ac - bd)
2 + (ad + be)

2

= Jas
c* + b*<f + a*d* + b

s
(?

= J(a
2 + b

2

)
(c

2 + dr)

= Ja2 + b
2
x Jc2 + d2

;

which proves the proposition.

104. If the denominator of a fraction is of the form a + bj— 1,

it may be rationalised by multiplying the numerator and the

denominator by the conjugate expression a — b J— 1.
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For instance

c + dj - 1 (c + dJ-\)(a-bJ-\

)

+ b J=l ~(a + b J~i)(a-bJ-T)

ac + bd + (ad — be)J— 1

2 72a + b

a

ac + bd ad — be
-i

a + b~ a' + b
• _• v

Thus by reference to Art. 97, we see that the sum, difference,

product, and quotient of two imaginary expressions is in each case

an imaginary expression of the sameform.

105. Tofind the square root of a + hJ— 1.

Assume Ja + b V— 1 =x + y s/— 1,

where x and y are real quantities.

By squaring, a + bj—\=x2 -y2 + 2xy J— 1

;

therefore, by equating real and imaginary parts,

x2 -y2 = a (1),

^!/ = b (2);

.-. (x
2 + y

2

)

2 = (x
2 - ff + (2xyY

2 , 2.2= a + b
;

.•
. xs + if = Ja2 + 6" (3).

From (1) and (3), we obtain

. Ja2 + b
2 + a . Ja2 + b

2 -a
x -*—2

.»"=*—
i

;

Thus the required root is obtained.

Since x and y are real quantities, x2 + y- is positive, and therefore in (3)

the positive sign must be prefixed before the quantity *Ja 2 + b-.

Also from (2) we see that the product xy must have the same sign as b
;

hence x and y must have like signs if b is positive, and unlike signs if b is

negative.
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Example 1. Find the square root of - 7 - 24 J - 1.

Assume J- 7- 21*/- l = x + y J- 1

;

then -7-24 N/
T l = -^

2 -2/ 2 +2^ N/
Tl;

••• *2 -?/2 =-7 (1),

and 2a;?/ = -24.

= 49 + 576

= 625;

.\ar + 2/
2= 25 (2).

From (1) and (2), x-= 9 and
?y
2= 16

;

.-. x= ±3, ?/== ±4.

Since the product xy is negative, we must take

x - 3, y= - 4 j or # = - 3, ?/ = 4.

Thus the roots are 3 - 4 „/ - 1 and -3 + 4 *J - 1

;

that is, 7 - 7 - 247"TT= ± (3 - 4 J ~i).

Example 2. To find the value of ^/ - 64a4
.

It remains to find the value of \/ ±*J - 1.

Assume
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106. The symbol J — 1 is often represented by the letter i; but
until the student has had a little practice in the use of imaginary

quantities he will find it easier to retain the symbol J — 1. It is

useful to notice the successive powers of J — 1 or i ; thus

(7-1)^1, i*=ij

and since each power is obtained by multiplying the one before it

by J — 1, or ?', we see that the results must now recur.

107. We shall now investigate the properties of certain imagi-

nary quantities which are of very frequent occurrence.

Suppose x - ^1 ; then x3 = 1, or x3 — 1 = ;

that is, (x - 1 )
(x

2 + x+ 1)^0.

. \ either x — 1 = 0, or x2 + x + 1 = ;

-W-3whence 35=1, or x = .

It may be shewn by actual involution that each of these

values when cubed is equal to unity. Thus unity has three cube

roots,

-l+JZTs -1-733
2 "' 2

~'

two of which are imaginary expressions.

Let us denote these by a and ft ; then since they are the roots

of the equation

x2 + x + l =0.

their product is equal to unity

;

that is, aft= 1
;

. \ aft = a2

;

that is,
. ft

= a
2
, since a8 = 1.

Similarly we may shew that a = ft
2

.

108. Since each of the imaginary roots is thr, square of thr

other, it is usual to denote the three cube roots of unity by 1, <d, «>~.
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Also a) satisfies the equation x2 + x + 1 = ;

. •. 1 + to + w2 = ;

that is, the sum of the three cube roots of unity is zero.

Again, to . o>
2 — w = 1

;

therefore (1) the product of the two imaginary roots is unity ;

(2) every integral power of w
3
is unity.

109. It is useful to notice that the successive positive

integral powers of a> are 1, to, and w2
; for, if n he a multiple of 3,

it must be of the form 3m ; and to" = w3m — 1.

If n be not a multiple of 3, it must be of the form 3m + 1 or

3m + 2.

-rt> n 1 n 3m +

1

3m
It n = dm + 1

,

W — o> =to .to = to.KO . O " 3m +2 3m 2 2w = om +-, w=w =w .w=to.

110. We now see that every quantity has three cube roots,

two of which are imaginary. For the cube roots of a3
are those

of a
7
" x 1, and therefore are a, ao>, aw2

. Similarly the cube roots

of 9 are ^9, o> ^9, a>
2
^9, where ^

79 is the cube root found by the

ordinary arithmetical rule. In future, unless otherwise stated,

the symbol %ja will always be taken to denote the arithmetical

cube root of a.

(9 4. 3 / _ 1 \2

Example 1. Reduce *
, . to the form A + Bj - 1.

2 + N/-l

The expression ^
4-9 + 12^-1

2 + v/
:=~l

(-5 + 12 N/Jl)(2-V^l)
(2+ J-l)(2-J-T)

-10 + 12 + 29 J~l
4 + 1

2 29 /—

r

=
5
+W- 1;

which is of the required form.

Example 2. Resolve x3 + y3 into three factors of the first degree.

Since x3 + if= (x + y) (x2 -xy + y2
)

.'. x* + y
9 = (x + y) (x + toy) (x + ury)

;

for w + w2 = -1, and w3 = l.
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Example 3. Shew that

(a + wb + arc) (a + w26 + toe)- a2 + b2 + c2 - 60 - ca - ab.

In the product of a + wb + arc and a + orb + wc,

the coefficients of Zr and c
2 are or, or 1

;

the coefficient of be = w2 + o>
4 = or + o> = - 1

;

the coefficients of ca and a&= o>
2 + o> = - 1

;

.*. (a + cob + arc) {a + urb + wc) = a 2 + b2 + c 2 - be - ea - ab.

Example 4. Shew that

(l + «-«>)'-(l-M+U?)*=0.

Since 1 + w + o>
2 = 0, we have

(1 + u- w2
)

3 - (1 - w + wa)3=( - 2m2
)
3 -

(
- 2o>) :J

= -8o>6 + 8a/{

= -8 + 8

= 0.

EXAMPLES. VIII. b.

1. Multiply 2 \/~~3 + 3 V3^ by 4 *J^3- 5 a/^2.

2. Multiply 3 V^7 - 5V^ by 3V^+ 5 V^.

3. Multiply e^-1 +e'^~1 by e^ _1 -e -V-*.

A AT IX' I
l+V3^ . l-V^

4. Multiply a; 5 by # =
.

Express with rational denominator

:

_ 1 3 a/~2~ + 2 *J~-h
0. ,— • o. , , .

3-V-2 3V-2-2V-5

3 + 2 V~l 3-2 V^l a+rV^l a-x»f-i
2-5\/rl 2 + 5V:r l' a-WisT-i a+a?V^-l"

g
(.f+ V-l)a (W- l)^

ia
(a+ V-lja-Cft-V-l)^

.v-V-1 .r+ V-1 (a + \/-l) 2 -(«- V-l)a#

11. Find the value of ( - \/ - l)4n
+ 3

, when w is a positive integer.

12. Find the square of Jd + 40 V"-T+ V9 - 40 V -?.

H. H. A. (j
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Find the square root of

13. -S + ISV^L 14. -ll-COV 17!". 15. -47 + 8V-3.

16. -SV^l. 17. a2 -l+2a^^l.

18. ±ab-2(a2 -b2)*/^T.

Express in the form A + iB

iy
* 2-3r ZU>

2V3-i\/2'
zu 1-T

09 a + O8
9<* (^+ ^)2 («-^)2

3 — i a — ib a + io

If 1, co, g>
2 are the three cube roots of unity, prove

24. (l+co2
)
4= co. 25. (l-co + co

2)(l+co-or) = 4.

26. (1 - co) (1 - co- ) (1 - CO
4
) (1 - co

5
) - 9.

27. (2 + 5co + 2co2)
6= (2 + 2co + 5a>

2
)
6= 729.

28. (l-co + co
2)(l-co2 + co

4)(l-co 4+ co
8
)... to 2>i factors = 22 ».

29. Prove that

A3 +yZ + £> _ 2#gZ= (x+y+z) (#+ i/a> + Za>
2
)
(x +y<o 2+ Za).

30. If x=a+b
t y— aw + Z>co

2
, s=«co2 + 6co,

shew that

(1) xyz=a3+b3
.

(2) ^-2+ ?/
2+ 52= 6a6.

(3) a3+y3+s3=3(a3+&3
)k

31. If ax+ cy+ bz= X, ex+ by + az= I", Zu-+ ay + gs= if,

shew that (

a

2 + 62 + c2 - be - ca - ab) (x2+y2 + z2 -yz- zx - xy)

=X 2+Y2+Z2 - YZ-XZ- XY.



CHAPTER IX.

THE THEORY OF QUADRATIC EQUATIONS.

111. After suitable reduction every quadratic equation m;iy

be written in the form
(Lif Jrbx + C — (1),

and the solution of the equation is

- b ± Jtf^iac
x = \ (2).

2a v '

We shall now prove some important propositions connected

with the roots and coefficients of all equations of which (1) is

the type.

112. A quadratic equation cannot have more than tiro roots.

For, if possible, let the equation ax2 + bx + c = have three

different roots a,
f3, y. Then since each of these values must

satisfy the equation, we have

aa2
-t- ba + c~0 (1),

afi
2 + bp + c = (2),

ay2 + by + c = (3).

From (1) and (2), by subtraction,

a(a2 -p2

) + b(a-P) = 0;

divide out by a — fi which, by hypothesis, is not zero; then

a (a + ft) + b = 0.

Similarly from (2) and (3)

a {fi + y) + b = ;

.•. by subtraction a (a - y) — ;

which is impossible, since, by hypothesis, a is not zero, and u is

not equal to y. Hence there cannot be three different roots.

G—

2
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113. In Art. Ill let the two roots in (2) be denoted by a and

/3, so that

-b + Jb
2 - Aac —b- Jb

2 — Aac
_a =

, P =
2a ' ' 2a '

then we have the following results :

(1) If b
2 - Aac (the quantity under the radical) is positive,

a and (3 are real and unequal.

(2) If b
2 — Aac is zero, a and ft are real and equal, each

reducing in this case to — 77-

.

2a

(3) If b
2 - Aac is negative, a and ft are imaginary and unequal.

(4) If b
2 — Aac is a perfect square, a and /3 are rational and

unequal.

By applying these tests the nature of the roots of any
quadratic may be determined without solving the equation.

Example 1. Shew that the equation 2x2 -6a; + 7 = cannot be satisfied

by any real values of x.

Here a = 2, b = - 6, c — 7 ; so that

&2_ 4ac= (_6)2-4.2.7=-20.

Therefore the roots are imaginary.

Example 2. If the equation a?
2 + 2 (k + 2) x + 91c = has equal roots, find l\

The condition for equal roots gives

(fc + 2)
2= 9£,

fc2_5ft+ 4=0,
(fc-4)(fc-l)=0j

.-. k = A, or 1.

Example 3. Shew that the roots of the equation

x2 - 2p3 +p2 -q2 + 2qr- r2=
are rational.

The roots will be rational provided (-- 2p)
2 - 4 (p

2 - q
2 + 2qr-r2

) is a
perfect square. But this expression reduces to 4 (q

2 -2qr + r2), or 4:(q-r) 2
.

Hence the roots are rational.

- - , D . - b + Jb
2 - Aac -b- Jb2 - Aac

114. Since a= ^ '
?=

2a
'

we have by addition

- b + Jb2 - Aac -b- Jb2 - Aac
* +^ 2a

__M_b
2a a 0);
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and by multiplication we have

n = (- b + J¥~r^
) (_. 5 _ j,/r^-c)

_ 4ac c

~4a2
=
« : (2).

By writing the equation in the form

2 ° c

a a '

these results may also be expressed as follows.

unity,
* qUadratiC e(

l
uation «**" ** coefficient of the first term is

its 4**5d?
the roots is equal t0 the coefficient of with

(ii) the product of the roots is equal to the third term.

*£%*£»"&££&£**" not contain the 8nta0™

115. Since __ =a+ £ and £ *

the equation ar+ - a; + - = may be written

x2 -(a + f])x + ap = (1).

Hence any quadratic may also be expressed in the form
x2 - (sum of roots) x + product of roots = (2).

Again, from (1) we have

(x-a)(x-p) = Q (3).

We may now easily form an equation with given roots.

Example 1. Form the equation whose roots are 3 and - 2.

The equation is (* - 3) (*+ 2)=0,
or ««-*- 6=0.

When the roots are irrational it is easier to use the followingmetnou. ~>
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Example 2. Form the equation whose roots are 2 + ^3 and 2 - ^3.

We have sum of roots= 4,

product of roots= 1

;

. •
. the equation is x- - Ax + 1 = 0,

by using formula (2) of the present article.

116. By a method analogous to that used in Example 1 of

the last article we can form an equation with three or more given

roots.

7
Example 1. Form the equation whose roots are 2, - 3, and ^

.

o

The required equation must be satisfied by each of the following sup-

positions :

7
#-2=0, # + 3 = 0, £-- = ();

therefore the equation must be

(*-2)(*+3)(*-|)=0j

that is, [x - 2) (x +3) (5a;- 7) =0,

or 5a;
3 -2a;2 -37a; + 42 = 0.

Example 2. Form the equation whose roots are 0, ±«, j .

The equation has to be satisfied by

c
x= 0, x = a. x=-a, x=}

;

b

therefore it is

x (x -J- a) (x - a) ( x - -
j
= ;

that is, x (x2 - a2
)
(bx - c) = 0,

or bx4 - ex3 - a~bx- + a-cx= 0.

117. The results of Art. 114 are most important, and they

are generally sufficient to solve problems connected with the

roots of quadratics. In such questions the roots should never be

considered singly, but use should be made of the relations ob-

tained by writing down the sum of the roots, and their product,

in terms of the coefficients of the equation.

Example 1. If a and /3 are the roots of x--px + q = 0, find the value of
(l)a2 + /3

2
,
(2)as + /3

3
.

We have a + (2=p,
a

a(3= q.

.-. a2 + /3
2 =(a + /3)

2 -2a/3

=p*-2q.
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Again, a ;{ + ft = (a + /3) (a2 + p"2 - a/3)

=i>{(a+ /3)
a -3a/3]

=*(?»- 89).

Example 2. If a, p" are the roots of the equation /.r'-'-| mx + 7i = 0, find the

equation whose roots are — , -

.

p a

"We have sum of roots = + - = ^
,

p a. ap

product of roots = - . -=1

:

p a

.-. by Art. 115 the required equation is

or apx2 - (a2 + p~2
) £ + 0/3= 0.

O O 7

As in the last example o2 +j8
B= =—

, and a/3= -- .

L t

., ,. n ?ji
2 -2wZ ?i _

.*. the equation is x- -=— x + y = 0,
V v it

or n /x-
2 - (

m

2 - 2nZ) x+ nl= 0,

Example 3. When .r = ^ , find the value of 2x3 + 2x2 -7x+l'2
;

and shew that it will be unaltered if £- be substituted for x.
a

Form the quadratic equation whose roots are ^ ;

the sum of the roots = 3

;

17
the product of the roots = —

;

hence the equation is 2.r2 - 6.r + 17 = ;

.*. 2x2 -6x + 17 is a quadratic expression which vanishes for either of the

, 3*5^/-"!
values ^ •

m

Now 2a* + 2.t2 - Ix + 72 = x (2.r2 - C>.c + 17) + 4 (2.r
2 - Cx + 17) + 4

=xx0+4x0+4
= 4;

which is the numerical value of the expression in each of the supposed cases.
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118. To find Vie condition that the roots of the equation

ax2 + bx + c = should be (1) equal in magnitude and opposite

in sign, (2) reciprocals.

The roots will be equal in magnitude and opposite in sign if

their sum is zero ; hence the required condition is

_ - = 0, or b = 0.
a

Again, the roots will he reciprocals when their product is

unity ; hence we must have

c
i— = 1. or c = a.

a

The first of these results is of frequent occurrence in Analyti-

cal Geometry, and the second is a particular case of a more
general condition applicable to equations of any degree.

Example. Find the condition that the roots of ax2 + bx + c= may be (1)

both positive, (2) opposite in sign, but the greater of them negative.

b c
We have a + B=— , a8=- .

a a

(1) If the roots are both positive, a/J is positive, and therefore c and a

have like signs.

Also, since a + fi
is positive, — is negative; therefore b and a have unlike

signs.

Hence the required condition is that the signs of ft and c should be like,

and opposite to the sign of b.

(2) If the roots are of opposite signs, a/3 is negative, and therefore c and
a have unlike signs.

Also since a +/3 has the sign of the greater root it is negative, and there-

fore - is positive; therefore b and a have like signs.
(X

Hence the required condition is that the signs of a and b should be like,

and opposite to the sign of c.

EXAMPLES. IX. a.

Form the equations whose roots are

. 4 3 m n p-q p+ q
o / n m p+q p—y

4. 7±2 N/5. 5. ±2«/3~5. 6. -p±2s/Tq.
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7. -3±5l 8. -a±ib. 9. ±i(a -b).

10. -3, |,
i. 11. |, 0, -|. 12. 2±«/3, 4.

13. Prove that tlio roots of the following equations are real

:

( 1

)

x2 - 2ax+aa - 6a - c2- 0,

(2) (a - b + c) r- +4 (a - 6) .v+ (a - b - c) = 0.

14. If the equation x2 - 15 -m(2x-8) = lias equal roots, find the
values of m.

15. For what values of m will the equation

x2- 2x (1 + 3//0 + 7 (3 + 2m) =

have equal roots ?

16. For what value of m will the equation

x* — bx m - 1

ax-c m+ 1

have roots equal in magnitude but opposite in sign ?

17. Prove that the roots of the following equations are rational:

(1) (a+ c-b)x2+ 2cx+ (b + c-a) = 0,

(2) abc2x2 + 3a2cx+ b2ex - 6a2 -ab + 2b'1 = 0.

If a, /3 are the roots of the equation ax2+ bx+ c= 0, find the values of

18. »,+£. 19. aW+aV. 20. (|-f)
2

.

Find the value of

21. a3 + s2 - X+ 22 when .r= 1 + 2/.

22. x3 - Zx2 - 8x+15 when x

=

3+ ?

.

23. .t-
3 - «.r2+ 2a2

.r + 4«3 when -= 1 -J - 3.
a

24. If o and /3 are the roots of x*+px+q=O
t
form the equation

whose roots are (a- ft)
2 and (a + /3)

2
.

25. Prove that the roots of (x— a) (.»; -b) = h 2 are always red.

26. I f .'-, , x% are the roots of ctx*+bx + c= 0, find tho value i >f

(1) (ax
l
+ b)- 2+ («x

i + b)- 2
,

(2) (ax^byt+iaxt+b)-*.
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27. Find the condition that one root of ax2 + bx-\-c = shall be

n times the other.

28. If a, (3 are the roots of ax2 + bx+ c= 0, form the equation whose
roots are a2+ /3

2 and o~ 2+/3
-2

,

29. Form the equation whose roots are the squares of the sum and
of the difference of the roots of

2x*+ 2 (m+ n) x + m2+ n2 =0.

30. Discuss the signs of the roots of the equation

px2+ qx + r= 0.

119. The following example illustrates a useful application

of the results proved in Art. 113.

x- + 2x — 11
Example. If x is a real quantity, prove that the expression -.

can have all numerical values except such as lie between 2 and 6.

Let the given expression be represented by y, so that

a2 + 2:r- ll_
2(s-3) ~y;

then multiplying up and transposing, we have

rr
2 +2.r(l-?/) + 6f/-ll = 0.

This is a quadratic equation, and in order that x may have real values

4(1 -i/)2-4(Gy — 11) must be positive; or dividing by 4 and simplifying,

?/
2 - 8*/ + 12 must be positive ; that is, (y - 6) (y - 2) must be positive. Hence

the factors of this product must be both positive, or both negative. In the

former case y is greater than 6; in the latter y is less than 2. Therefore

y cannot lie between 2 and 6, but may have any other value.

In this example it will be noticed that the quadratic expression

y
2 — 8y + 12 is positive so long as y does not lie between the roots

of the corresponding quadratic equation y
2 — Sy + 12 = 0.

This is a particular case of the general proposition investigated

in the next article.

120. For all real values of x tlie expression ax2 + bx+c has

the same sign as a, except when the roots of the equation ax2+bx + c =0
are real and unequal, and x has a value lying between them.

Case I. Suppose that the roots of the equation

ax2 + bx + c =

are real ; denote them by a and
ft, and let a be the greater.
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Then ((.r
2
4 bx + c — a ( x* + - X + )

V a aj

= a {x2 - (tt + ft) X + aft

= a (x - a) (x -
ft).

Now if x is greater than a, the factors x — a, x —
ft are both

positive ; and if x is less than
ft,

the factors x — a, x — ft are both

negative; therefore in each case the expression (x — a)(x — ft) is

positive, and ax2 + bx + c lias the same sign as a. But if x has a

value lying between a and
ft,

the expression (./• - a) (x - ft) is

negative, and the sign of ax" + bx + c is opposite to that of a.

Case II. If a and ft are equal, then

ax2 + bx + c = a(x— a)
2

,

and (x - a)
2
is positive fur all real values of x ; hence ax2 + bx + c

has the same sign as a.

Case III. Suppose that the equation ax2 + bx + c = Q lias

imaginary roots ; then

ax2 + bx + c — alx* x + -

a a\
{-•

(/ b\- iae-b')

But b
2 — 4«c is negative since the roots are imaginary ; hence

iac-b* . .

is positive, and the expression
4a2

(
x +

&)

2 Aac — b
2

^- +
\a2

is positive for all real values of x ; therefore ax2 + bx + c has the

same sign as a. This establishes the proposition.

121. From the preceding article it follows that the expression

ax2 + bx + c will always have the same sign whatever real value x

may have, provided that b
2 - Aac is negative or zero; and if this

condition is satisfied the expression is positive or negative accord-

ing as a is positive or negative.

Conversely, in order that the expression ax2 + bx + c may be

always positive, b
2 — Aac must be negative or zero, and a must be

positive; and in order that ax2 + bx + c may be always negative

I
1 - Aac must be negative or zero, and a must be negative.
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Example. Find the limits between which a must lie in order that

ax2 - Ix + 5

5x2 - Ix + a

may be capable of all values, x being any real quantity.

_ ax 1 -lx + 5
Put

i- o rr =v;

then (a-5?/)a:2 -7.r(l-?/) + (5-a?/):=0.

In order that the values of x found from this quadratic may be real, the
expression

49 (1 - y)'2 - 4 (a - 5y) (5 - ay) must be positive,

that is, (49 - 20a) y
2 + 2 (2a2 + l)y + (49 - 20a) must be positive

;

hence (2a 2 + 1)
2 - (49 - 20a)2 must be negative or zero, and 49 - 20a must be

positive.

Now (2a2 + 1)
2 - (49 - 20a) 2 is negative or zero, according as

2 (a 2 - 10a + 25) x 2 (a2 + 10a - 24) is negative or zero

;

that is, according as 4 (a - o) 2 (a + 12) (a - 2) is negative or zero.

This expression is negative as long as a lies between 2 and - 12, and for

such values 49 - 20a is positive; the expression is zero when a= 5, - 12, or 2,

but 49 -20a is negative when a= 5. Hence the limiting values are 2 and
- 12, and a may have any intermediate value.

EXAMPLES. IX. b.

1. Determine the limits between which n must lie in order that

the equation
2ax (ax+ nc) + (n2 - 2) c2=

may have real roots.

x . 1
2. If x be real, prove that -5

—

'- must lie between 1 and - r^ .x xl — bx + 9 11

^•2
.77 4- 1

3. Shew that -=

—

'-

lies between 3 and - for all real values of x.
x- +x+\ 3

sb
3+34a?— 71

4. If x be real, prove that •—^

—

= =- can have no value between
x x1+ 2# — 7

5 and 9.

5. Find the equation whose roots are
s]a± sja - b

6. If a, /3 are roots of the equation x2 — px+q=0, find the value of

(1) atitfp-i-fl + ptfPa-i-a),

(2) (
a -p)-*+ (P-p)-\
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7. If the roots of ht?+ nx+n=0 be in the ratio ofp : qt
prove that

8. If x be real, the expression n . r admits of all values
2 (x - n)

except such as lie between 2)i and 2m.

9. Tf the roots of the equation ax2+ 2hx+ c=() be a and (3, and
those of the equation Ax'

y
-+2Ux+C=0 be a-ffi and fi + d, prove that

b*-ae_B*-AC
~~a2 ~ A 2

'

10. Shew that the expression —— —5 will be capable of all
p + 3x - 4x* L

values when x is real, provided that p has any value between 1 and 7.

.#4-2
11. Find the greatest value of n * n - for real values of x.& 2x2+ 3x + 6

12. Shew that if x is real, the expression

(x2 -bc)(2x-b-c)~ i

has no real values between b and c.

13. If the roots of ax2+ 2bx + c = be possible and different, then
the roots of

(a + c) (ax2 + 2bx + c) = 2 (ac - b2
)
(.r

2+ 1)

will be impossible, and vice versa.

14. Shew that the expression -
fl

- {-)- ,! will be capable of all
(ox — a) (ex — a)

values when x is real, if a2 - b2 and c2 — d2 have the same sign.

*122. We shall conclude this chapter with some miscellaneous

theorems and examples. It will be convenient here to introduce

a phraseology and notation which the student will frequently

meet with in his mathematical reading.

Definition. Any expression which involves x, and whose
value is dependent on that of x, is called a function of X.

Functions of x are usually denoted by symbols of the form f(x),

F(x),<f>(x).

Thus the equation y =f(x) may be considered as equivalent

to a statement that any change made in the value of as will pro-

duce a consequent change in ;//, and vice versd. The quantities x
and y are called variables, and are further distinguished as the

independent variable and the dependent variable.
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An independent variable is a quantity which may have any
value we choose to assign to it, and the corresponding dependent

variable has its value determined as soon as the value of the inde-

pendent variable is known.

% 123. An expression of the form

pjs" +p x
xn ] + pjf 2 + . . . + pn_ t

x +pn

where n is a positive integer, and the coefficients p lt , plt pa,...pn
do

not involve x, is called a rational and integral algebraical function

of x. In the present chapter we shall confine our attention to

functions of this kind.

*124. A function is said to be linear when it contains no

higher power of the variable than the first ; thus ax + b is a linear

function of x. A function is said to be quadratic when it

contains no higher power of the variable than the second ; thus

ax2 + bx + c is a quadratic function of x. Functions of the third,

fourth,... degrees are those in which the highest power of the

variable is respectively the third, fourth, Thus in the last

article the expression is a function of x of the nth degree.

*125. The symbol fix, y) is used to denote a function of two
variables x and y ; thus ax + by + c, and ax2+ bxy + cy

2+ dx + ey +f
are respectively linear and quadratic functions of x, y.

The equations fix) = 0, fix, y) — are said to be linear, quad-

ratic, ... according as the functions f(x), f(x, y) are linear, quad-

ratic,....

*126. We have proved in Art. 120 that the expression

ax2 + bx + c admits of being put in the form a (x — a) (x —
fi),

where a and j3 are the roots of the equation ax2 + bx + c — 0.

Thus a quadratic expression ax2 + bx-\- c is capable of being

resolved into two rational factors of the first degree, whenever
the equation ax2 + bx + c = has rational roots ; that is, when
b
2 - iac is a perfect square.

*127. To find the condition that a quadratic function ofx,y
may be resolved into two linear factors.

Denote the function hy f(x, y) where

f{x, y) = axz +'2hxy + by
2 + 2gx+ 2fy + c.
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Write this in descending powers of x, and equate it to zero;

thus

ax* + 2x (hy + y) + by 2 + 2fy + c - .

Solving this quadratic in x we have

_ - (h + (j) ± J{hy + y)* - a (by
2 + 2fy + c)

x —
,a

< >v ax + hy + g = ± Jy
2
(h* - ab) + 2y (hy — a/) + (g

2 - ac).

Now in order that J\.r, y) may be the product of two linear

factors of the form px + qy + r, the quantity under the radical

must be a perfect square ; hence

(kg - a/) 2 = (h- - ab) {<f
- ac).

Transposing and dividing by a, we obtain

abc + 2fyh — af
2 — by

2 — ch
2 = ;

which is the condition required.

This proposition is of great importance in Analytical Geometry.

*128. To find the condition that the equations

ax2 + bx + c — 0, ax2
f b'x + c -

may have a common root.

Suppose these equations are both satisfied by x a ; then

aa.
2 + ba + c = 0,

a'a
2 +b'a + c' = 0;

.*. by cross multiplication

a" a 1

be — b'c ca — c'a ab' — ab
'

To eliminate a, square the second of these equal ratios and
equate it to the product of the other two ; thus

a a 1

(ca — c'a)
2

(be — b'c)
' (ab' — ab)

'

.'. (ca — ca) 2 = (be — b'c) (ab' — ab),

which is the condition required.

It is easy to prove that this is the condition that the two
quadratic functions ax2 + bxy + cy2 and a'x

2 + b'xy + c'y' may have

a common linear factor.
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^EXAMPLES. IX. c.

1. For what values of m will the expression

y
2+ 2xy+ 2x+ my - 3

be capable of resolution into two rational factors ?

2. Find the values of m which will make 2.v2 + mxy + 3y2 - 5y - 2
equivalent to the product of two linear factors.

3. Shew that the expression

always admits of two real linear factors.

4. If the equations

x2 +px + q= 0, x2+ p'x+ q' =

have a common root, shew that it must be either

p'l'-p'q nr
9-q

q-q p-p

5. Find the condition that the expressions

Lv2+ mxy+ ny2
, l'x2+ m'xy -f- n'y'

1

may have a common linear factor.

6. If the expression

%a? + 2Pxy + 2y2 + 2ax - 4y+

1

can be resolved into linear factors, prove that P must be one of the
roots of the equation P'2+ 4aP+ 2d1+ 6 = 0.

7. Find the condition that the expressions

ax2 + 2hxy + by2
, a'x2 + 2k'xy+ b'y2

may be respectively divisible by factors of the form y -mx, my + x.

8. Shew that in the equation

x2 - Zxy + 2y2 - 2x - 3y - 35 = 0,

for every real value of x there is a real value of y, and for every real

value of y there is a real value of x.

9. If x and y are two real quantities connected by the equation

9x2 + 2xy +y2 - 92.r - 20y+ 244= 0,

then will x lie between 3 and 6, and y between 1 and 10.

10. If (ax2+ bx + c)y-\-a'x2 + b'x+ e' = 0, find the condition that x
may be a rational function of y.



CHAPTER X.

MISCELLANEOUS EQUATIONS.

129. In this chapter we propose to consider some mis-cellaneous equations
; it will be seen that many of the^l Zsolved by the ordinary rules for quadratic equJtions, but othersrequire some special artifice for their solution

_ 3_ 3

Example I. Solve 8x2n -8x~^=63.

Multiply by .r
2n and transpose; thus

- i.

8xn - 63x2'*-8 = 0;

— L
(a?"-8)(8x^+l) = 0;

- 1«2n= 8, or--;
8'

2n

=(*)* «(-p)*;

.-.*=«», or A.

Example 2. Solve 2 /-+ 3 /- = ^ 6V « V « « I

.•.%+! = * +«
2<% 2 -6a2?/-&2

</ + 3a& = 0;

(2ay~&)(ty-3a)=0;
6 3a

* &2 9a2

6a

4a '
" l

&a *

H. H. A.
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Examples. Solve (*-5)(a:- 7)(« + 6) (* + 4) = 504.

We have (x2 - x - 20) (x2 - x - 42) = 504
;

which, being arranged as a quadratic in x2 - x, gives

(a2 - x) 2 - 62 (x2 - x) + 336=

.-. (x2 -a:-6)(x2 -x-56) =

.-. X*- X -Q = f
or a2 -a; -56=

whence x = S, -2, 8, -7.

130. Any equation which can be thrown into the form

ax2 + bx + c + p Jax2 + bx + c — q

may be solved as follows. Putting y = Jax2 + bx + c, we obtain

Let a and ft be the roots of this equation, so that

Jax2 + bx + c = a, Jax2 +bx + c = ft ;

from these equations we shall obtainfour values of x.

"When no sign is prefixed to a radical it is usually understood

that it is to be taken as positive; hence, if a and ft are both

positive, all the four values of x satisfy the original equation.

If however a or ft
is negative, the roots found from the resulting

quadratic will satisfy the equation

ax2 + bx + c — pJax2 + bx + c = q,

but not the original equation.

Example. Solve x2 - ox+ 2 Jx2 - 5z+ 3= 12.

Add 3 to each side ; then

rc
2 -5a; + 3 + 2 N/^-5a; + 3= 15.

Putting Jx2 -5x+3 = y, we obtain y
2+ 2y - 15 = ; whence y = 3 or - 5.

Thus *Jx
2 - 5x + 3 = + 3, or Jx2 -6x + S= -5.

Squaring, and solving the resulting quadratics, we obtain from the first

ic=6 or -1; and from the second x^

satisfies the given equation, but the second pair satisfies the equation

ing quadratics, we obtain from the first

: =—^
. The first pair of values

x2 - 5x -2 Jx2 -5x + 3 = 12.
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131. Before clearing an equation of radicals it is advisable

to examine whether any common factor can be removed by
division.

Example. Solve *Jx'
2 - lax + 10a'2 - Jx- + ax- 6a-— x- 2a.

We have

*J(x-2a)(x-5a) - J{x-2a) (x+Sa) = x-2a.

The factor *Jx - 2a can now be removed from every term

;

.'. sjx -5a- Jx + 3a= „Jx - 2a

;

x - 5a + x + 3a - 2 *J(x - 5a) (x + 3a) = x - 2a
;

x = 2 Jx'
2 - 2ax - 15a'2

;

3ar-8aa;-60a2= 0;

{x -6a) (3a;+ 10a)=0;

c 10a
x— ba, or ——

.

Alsoxby equating to zero the factor Jx - 2a, we obtain x= 2a.

On trial it will be found that x= 6a does not satisfy the equation : thus

the roots are —— and 2a.
D

The student may compare a similar question discussed in the Elementary
Algebra, Art. 281.

132. The following artifice is sometimes useful.

Example. Solve J'3x- - 4.x + 34 + JSx'2 - 4x - 11 = 9 (1).

We have identically

(3x--4a; + 34)-(3a;2 -4x-ll) = 45 (2).

Divide each member of (2) by the corresponding member of (1); thus

J'dx- - 4.r + 34 - JSx2 - 4x - 11 = 5 (3).

Now (2) is an identical equation true for all values of x, whereas (1) is an
equation which is true only for certain values of x ; hence also equation (3)

is only true for these values of x.

From (1) and (3) by addition

v/3x
2 -4a; + 34= 7;

whence as= 3, or --.

7—7
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133. The solution of an equation of the form

ax4 ± bx3 ± ex2 ± bx + a = 0,

in which the coefficients of terms equidistant from the beginning
and end are equal, can be made to depend on the solution of a
quadratic. Equations of this type are known as reciprocal equa-

tions, and are so named because they are not altered when x is

changed into its reciprocal -

.

For a more complete discussion of reciprocal equations the

student is referred to Arts. 568—570.

Example. Solve 12a;4 - 56x3 + 89a;2 - 56.x + 12 = 0.

Dividing by x2 and rearranging,

12/W-2 ) -56^+^+89= 0.

Put x + -=z: then a;
2 + — = z2 -2;

x x-

.-. 12 (z2 - 2) -56^ + 89 = 0;

whence we obtain z = - , or -=- .

2 u

1 5 13

a; 2 6

13 2
By solving these equations we find that x= 2, -

, - , - .

134. The following equation though not reciprocal may be

solved in a similar manner.

Example. Solve 6a;4 - 25a;3 + 12a;2 + 25a; + 6 = 0.

We have 6 (^
2

+^i) - 25 fx - -\ + 12 = 0;

whence 6(a;—
j
-25 (a;— 1+24= 0;

.-. 2 (^--^-3 = 0, or 3 fx- -]-8-0;

whence we obtain a; = 2, - -
, 3, - -

.

135. When one root of a quadratic equation is obvious by
inspection, the other root may often be readily obtained by
making use of the properties of the roots of quadratic equations

proved in Art. 114.
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Example. Solve ( 1 - a-) {x + a) - 2a ( 1 - ar) = 0.

This is a quadratic, one of whose roots is clearly a.

Also, since the equation may be written

2ax- + (1 - a2
) x - a (1 + a2

) = 0,

the product of the roots is - - ; and therefore the other root is — — .

EXAMPLES. X. a.

Solve the following equations :

1. a- 2 -2x~1= 8. 2. 9 + a- 4= 10a--'.

1 3 1 _J

3. 2jx+ 2x §=5- 4. 6a?*~7**-8a7 *.

2 1 JL 1

5. 3"+6=5#». 6. 3.f2n -.rri -2=0.

7
- »>/;+Vj-"* a \/S + \/?' 2*.

i

9. 6x/a=5a 2 -13. 10. 1+8.^+9^= 0.

11. 32*+9« 10. 3*. 12. 5 (5*+ 5-*) = 26.

13. 22* + 8+ 1 = 32.2'. 14. 22* + 3 -57 = 65(2*-l).

15. ,/*+£-* 16. ^.-#=5A-
17. (x - 7) (a- - 3) {x+ 5) (.v+ 1 ) = 1 680.

18. (x+ 9) (x - 3) (x - 7) {x+ 5) = 385.

19. x (2x+ 1 )
(.v - 2) (2a - 3) = 63.

20. (2a-7)(a2 -9)(2a + 5)= 91.

21. A'
2+ 2 >/a2 + 6a= 24 - 6x.

22. 3a2 - 4a+ s/'3x
i -4x-6= l8.

23. 3a2 -7 + 3 (N/3sa -16a?+ 21 = 16a;.

24. 8 + 9 J(&v -1) (x -2) = 3.c2 - 7a.

25 . ^-2
+s/,,,_-5,+3=^:.
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26. 7.-^hs±i_c» W.Y.
x \*jx j

27. J4x2 -7x-lb - >Jx2 -3x= Jx2 - 9.

28. >/2^2 -9^ + 4+ 3 J%v-l = J2x2+ 2\x-l\.

29. V2^2+ 5^-7 + V3(a;2 -7a;+ 6) - J7x2 -6x-l = 0.

30. s/a
2 + 2ax-3x2 - Ja2+ ax-6x2= ^/Sa2+ 3ao; - 9a;2.

31. J2x2 + bx - 2 - V2#2 + 5a; - 9 = 1.

32. x/3^
2 - 2x+ 9 + x/3.r

2 - 2o; -4 = 13.

33. V2^2 -7a;+l - ./2a;2 -9a; + 4= 1.

34. >/3^2 - 7^ - 30 - */2o;2 - 7x - 5 = a?- 5

.

35. o^+ a?-4o;2 + a;+l = 0.

8

9
36. x* + ^x2+ l = 3x3+3x. 37. 3*+l-3(«s+#)=2tf*.

38. 10(o7t +l)-63a?(a;2 -l) + 52a;2= 0.

x+J\2a-x _*Ja+\ a+ 2a;+ J'a2 - 4x2 _ bx

x - <Jl2a-x sJct-V a+2x- Ja2 - 4a;2
~ a '

.
1

a;+ sjx2 - 1 a; - ^/.r2 - 1 ,—

—

-
41.

, \ = 8x jx2 - 3x + 2.

x - sjx2 - 1 x+ a/^2 - 1

42. >/^+#I= |. 43. £".+ ./».
Jtf-x 2 a;

2 -l V #

44. 2*
2

: 22*= 8 : 1. 45. a2*(a2+ I) = (a?* + a*)a.

46
^/a?-5 = V3a?-7 18 (7a; - 3) _ 250V^+T
3a;-7 x-b ' ' 2a;+l "

3n/7^3
2 2 1

48. (a+ a;)
3" + 4 (a - *)= 5 (a2 - a;

2)"3
.

49. >/a;2+ aa;-l - Jx2 + bx-l =Ja - K/b.

50. ^B+-»-^El.8a
# - V^'

2 - 1 #+ \/a'2 - 1

51. .v
4 - 2.v3+ a;= 380. 52. 27^+ 2U-+ 8=
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136. We shall now discuss some simultaneous equations of
two unknown quantities.

Example 1. Solve x+2+y+S+ J(x + 2) (y + 3) = 39.

(z + 2)
2 + (y + 3)

2 + (:r + 2)( 2/ + 3)=741.

Put x + 2= m, and y + 3 = v ; then

u+v +Juv= Sd (1),

w2+ v2 + wv= 741 (2),

hence, from (1) and (2), we obtain by division,

u+ v - Juv = 19 (3)

.

From (1) and (3), u+t?=29;

and Juv = 10,

or wv= 100;

whence w= 25, or 4; v = 4, or 25 ;

thus x= 23, or 2; y=l, or 22.

Example 2. Solve .r
4 + y*= 82 (1),

ar-y=2 (2).

Put # = w+ t>, and y=u- v;

then from (2) we obtain v = l.

Substituting in (1), (w + l)4 + (u- 1)
4= 82;

.-. 2(m4 + 6m2 + 1) = 82;

u4 + 6u2 -40= 0;

whence w2= 4, or — 10 ;

and u= ±2, or ± >/~ 10*

Thus x=s, -l, i± V^iO;

ysal, -3, -li^-10.

JEa;ampZe3. Solve f^ -—^=2A (1),e Sx-yx + y
10

7x+ 5y = 29 (2).

From (1), 15 (2a;2 + Sxy + y* - 3z2 + Axy - y-) = 38 (3.x2 + 2xy - y*) ;

.-. 129o;2 -29xy-38?/2 = 0;

.-. {Sx-2y)(iBx + 19y)=0.

Hence Sx = 2y (3),

or 43#= -19y (1).
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From (3),

x y __7x + 5y

2
=

3
=

29

Again, from (4),

= 1, by equation (2).

.-. x= 2, y= 3.

x y 7x + 5y

19 ~ ^43 ~ - 82

29
= -gg, by equation (2),

551 _ 1247
•*' X ~ 82 ,V ~ 82 "

551 1247
Hence x= 2, y= 3; or x- -—

, 11 =-^- •

Example 4. Solve 4#3 + 3a;2f/ + ?/
3=8,

2z3 -2a;2?/ + £?/
2= l.

Put y = mx, and substitute in both equations. Thus

z3 (4 + 3m +m3
) = 8 (1).

z3 (2-2m + m2
) = l (2).

4 + 3m + mz _
•*'

2-2m +m2~ '

m3 -8»i9+19m -12 = 0;

that is, (/;i-l)(?/i-3) (m-4) = 0;

.*. m=l, or 3, or 4.

(i) Take m= l, and substitute in either (1) or (2).

From (2), #3= 1; .*. x= l;

and y=mx=x=l.

(ii) Take m= 3, and substitute in (2)

;

3 /l
thus 5:r3= l; .*. x= \/ k'->

3/1
and y = vix = 3x = 3 */ -.

(iii) Take7?&= 4; we obtain
3
/ 1

10.r3=l; .-. x=^-;
3 /I

and y = mx=4x=4. /r^.
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Hence the complete solution is

*=1, V5' v To*

•"
= 1

'

s
\/l>

4 \/^*

Note. The ahove method of solution may always be used when the

equations are of the same degree and homogeneous.

Example 5. Solve 3lx2
y

2 -7y4 - 112^ + 64 = (1),

x2 -7xy + 4y2 + 8 = ('2).

From (2) we have -8 = x2 - Ixy + 4//'- ; and, substituting in (1),

3\x2
y
2 - 7#

4 + Uxy {x2 - Ixy + Ay2
) + {x2 - Ixy + 4 j/")-= ;

.-. 31x-y2 - 7 j/
4 + (x2 - Ixy f Ay2

)
(Uxy + x2 - Ixy + Ay2

) = ;

.-. Slx2
y
2 -7y* + (x2 + 4y2

)
2 -(7xy) 2 = 0;

that is, s*-10sy+9y4=0 (3).

.'. (x2 -y2)(x2 -9y 2
) = 0;

hence x=±y, ov x= ±3y.

Taking these cases in succession and substituting in (2), we obtain

x =y=±2;

x=-y=± ^J
-

x=±3, y=±l\

3 >/-17'^=T \/ -
yj

Note. It should be observed that equation (3) is homogeneous. The
method here employed by which one equation is made homogeneous by a
suitable combination with the other is a valuable artifice. It is especially

useful in Analytical Geometry.

Example 6. Solve (x+yft+2 {x - ?/)* = 3 {x2 - y*fi (1).

3x-2y=13 (2).

i i i

Divide each term of (1) by (x2 - y
2

) , or {x +y)* (x - y)
r-

;

i i

. (
x +y\s

+2 (-~ yY=3\x-yj \.v + gj
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i

[x + v\ a

This equation is a quadratic in ( 1 , from which we easily find,

i

(
x±y-Y= 2oTl; whence^=8 or 1

;\x-yj x-y

.'. 7x = 9y, or y= 0.

Combining these equations with (2), we obtain

13
x=9, y = 7; or x= -^,y=0.

EXAMPLES. X. b.

Solve the following equations :

1. 3x-2y= 7, 2. bx -y = 3, 3. 4^-3^= 1,

xy= %). y
2 - 6#2= 25. 12^+ 13y2= 25.

4. a,
4 + #y+2/4= 931, 5. x2+ ocy +3/

2= 84,

x2 — xy +y2= 19. x - *Jxy+y =6.

6. x + Jxy+y = 65, 7. x +y = 7 + \A?y,

#2 + #y +y2 =2275. x2+y2= l33-xy.

8. 3#2 -5y2= 7, 9. 5y2 -7^= l7, 10. 3.r2+ 165 = 16.ry,

Zxy - 4y2= 2. bxy - 6x2= 6. 7^y+ 3y2= 1 32.

11. 3x2+xy+y2= l5, 12. #2 + y
2 -3= 3.zy,

Zlxy - 3x2 -bf= 45. 2x2 - 6 + y
2= 0.

13. .r
4+y4 =706, 14. xA +y*= 272, 15. ^-y5= 992,

x+y = 8. x-y = 2. x-y= 2.

16. ,r+i = l, 17. £+£-£, 18. |+t =y y x 2 2 5
5.

4 „ e 3 2 5 5
?/+-=25. = 1. - + - =

7;

11 11
19. x+y = 1072, 20. xy^+yx^=20, 21. #2+y2= 5,

11 33 11
^3 +y3= ie. ^-2+y2 =65. 6(.i?

2+y 2
) = 5.
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22. Jx+y+J7-y= 4, 23. y+ Jx2 - 1 = 2,

24 . JZ+JZ^, 25. f~f +v^ = i_7
,

26. tf*+ 4y
2 - 15*= 10 (3y - 8), xy = 6.

27. .r
2
y

2+ 400= 41ay, y
2= 5.ry - 4.r2.

28. 4i-2 + 5y=6+2Qay-25ya+ 2.v, 7#-lly= 17.

29. 9. c2 + 33.r -12 = 1 2xy - 4,y
2 + 22y , at? - ovy= 18.

30. (.-v
2 -y

2
)
(.r - y) = 1 6a^, (a4 -y

4
)
(a3 - y

2
) = 64Ga?y.

31

.

2.v2 - xy+y2=2y, 2x2 + 4xy= 5^.

32. y—-% + ,—% = -o- , 5.v - 7y= 4.
(.r + y)

2 (#-y) 2 8

33. y(y2 -3.r#-.r2
) + 24 = 0, x(j/2 -4xy + 2x2

) + 8 = 0.

34. 3a-3 - 8ay2+ if + 2 1 = 0, a2
(y - x) = 1

.

35. y2 (4v2 - 108) = x (x3 - 9y3
), 2x2 + 9xy + y

2= 108.

36. 6xi+ x2
y

2+ l6= 2x(\2x+y3
), x2 +xy-y2= 4.

37. x (a + x)=y(b+y), ax + by= (x + y)
2

.

38. xy+ «Z> = 2ax, xhf + a2b2= 262
y
2

.

39. fir_a + .lzi
> = _J L L . =0 .

a2 b2 x — b y — a a — b

40. 6.v3= 10a26.r+ 3a3
y, ay3 = 10ab2y + 3b3x.

41. 2a(--'A+4a2= 4:X2+^-t i

\y xj 2a a*

137. Equations involving three or more unknown quantities

can only be solved in special cases. We shall here consider some
of the most useful methods of solution.

Example 1. Solve x + y +z =13 (1),

.7^ + 2/2 + 22 = 65 (2),

xy = 10 (3).

From (2) and (3), (x + yf + *2= 85.

Put u for x + y ; then this equation becomes

u*+z*=85.
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Also from (1), u +z =13;

whence we obtain u= l or 6; z = 6 or 7.

Thus we have x + y = 7,1
and

£ + ?/ = 6,

#?/ = 10 \ acy= 10

Hence the solutions are

x=5, or 2,'| .r= 3db\/-l.,

y = 2, or 5,1 or y^W^T,
* = 6

5

J
z=l.

Example 2. Solve (a; + y) {x + z) = 30,

{y + z)(y + x) = 15,

[z+x)(z+y) =18.

Write m, 1;, w for ?/ + 2, a + as, a; + y respectively ; thus

viv — 30, tvu= 15, mv= 18 (1).

Multiplying these equations together, we have

wVu>2 _ 30 x 15 x 18= 15* x 62 ;

.*. uvw= ±90.

Combining this result with each of the equations in (1), we have

u= 3, v = 6, w = 5\ or w= -3, v= -6, w=-5;

.-. y + z=3,\ y+z=-S,\
z + x = $, > or z+x = -d>,\

x + y= 5)) x + y = -5,i

whence ce=4, y= l, 2 = 2; or x=-i, y=-l, «=-2.

Example 3. Solve y
2 + ys + 22 = 49 (1),

2 2 + z:r + a;
2 = 19 (2),

x* + xy + y
2=39 : (3).

Subtracting (2) from (1)

y
2 -x2 + z{y -«)=30;

that is, (y-x){x + y + z) = 30 (4).

Similarly from (1) and (3)

[z-x){x+y+z)*=10 (5).

Hence from (4) and (5), by division

y-*-
3 .

«-«
whence y = 3z-2x.
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Substituting in equation (3), we obtain

z*-8xa+8zs=13.

From (2), x2 + xz + z~= 19.

Solving tbese homogeneous equations as in Example 4, Art. 130, we obtain

a;=±2, z = ± 3 ; and therefore y = ± 5

;

or jc= ±-ts, 2= ± -t^ ; and therefore y= T —-,

Example 4. Solve .t
2 -yz = a2

,
y^ -zx= 62 , z 2 — xy = c2 .

Multiply the equations by y, 2, a; respectively and add ; then

c2.r + «2
// + &2z = (1).

Multiply the equations by z, x, y respectively and add ; then

b2x + c-y + a*z = (2).

From (1) and (2), by cross multiplication,

~^¥c2 =V^W =^W2 = k suPP°se '

Substitute in any one of the given equations ; then

k2 (a6 + b6 + c6 - 3a2
Z>
2c2) = 1

;

x 11 z 1

a4_^2c 2 ^4_ c 2
ft2 C4_ ai7/j *Ja*+b*+c*-3a?tP<?

EXAMPLES. X. c.

Joh



110 HIGHER ALGEBRA.

9. x*y*zhi=\% #VW=8, x*yz2u2= l, 3xy2z2u2= 4.

10. aPy*z=12
t
^-3 =54, .*%322= 72.

11. ay+#+y=23, 12. 2^-4?+2/= 17,

xz+x+ z= 4l, 3yz+y-6z= 52,

yz + ij + z= 27. §xz+ 3s + 2#= 29.

13. xz+y^lz, yz + x=8z, x + y+ z= l2.

14. .r
3+y3+ ^3=a3

, ^2+y2+ 22= a2
, # + #+ s= a.

15. ^2+y2 +22 =3/^+ 2^+ .«y= «2
, 3.r-# + 2= a*/3.

16. #2+y2-M2= 21a2
,
ys + ^-.ry = 6a2

, 3x+y-2z= 3a.

Indeterminate Equations.

138. Suppose the following problem were proposed for solu-

tion :

A person spends .£461 in buying horses and cows; if each

horse costs £23 and each cow £16, how many of each does he buy 1

?

Let x, y be the number of horses and cows respectively ; then

23a; + 16^ = 461.

Here we have one equation involving two unknown quantities,

and it is clear that by ascribing any value we please to x, we can

obtain a corresponding value for y ; thus it would appear at first

sight that the problem admits of an infinite number of solutions.

But it is clear from the nature of the question that x and y must

be positive integers ; and with this restriction, as we shall see

later, the number of solutions is limited.

If the number of unknown quantities is greater than the

number of independent equations, there will be an unlimited

number of solutions, and the equations are said to be indeter-

minate. In the present section we shall only discuss the simplest

kinds of indeterminate equations, confining our attention to posi-

tive integral values of the unknown quantities ; it will be seen

that this restriction enables us to express the solutions in a very

simple form.

The general theory of indeterminate equations will be found

in Chap. xxvi.
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Example 1. Solve 7# + 12j/ = 220 in positive integers.

Divide throughout by 7, the smaller coefficient ; thus

x + y+^ =31 + -;

.-. x + y+^-~ =31 ...

Since x anil y are to be integers, we must have

5y-S

(1)

and therefore

that is,

and therefore

7

l%-9

= integer
;

= integer

;

w-2%-l+ *-=-= integer;

1/-2
: integer=p suppose.

or

.-. y-2= 7p,

y = lp + 2

Substituting this value of y in (1),

.r + 7p + 2 + 5> + l = 31;

that is, x = 2§-l2p

(2).

.(3).

If in these results we give to p any integral value, we obtain corresponding
integral values of x and y; but if p > 2, we see from (3) that x is negative

;

and if p is a negative integer, y is negative. Thus the only positive integral

values of x and y are obtained by putting p= 0, 1, 2.

The complete solution may be exhibited as follows

:

p= 0, 1, 2,

a:= 28, 16, 4,

y= 2, 9, 16.

Note. When we obtained
5y-S

integer, we multiplied by 3 in order

to make the coefficient of y differ by unity from a multiple of 7. A similar

artifice should always be employed before introducing a symbol to denote
the integer.

Example 2. Solve in positive integers, 14x - 11// = 29.

Divide by 11, the smaller coefficient; thus

(1).

x +
Sx

11
i/-2 +

ir ;

3x-7
11

= 2 - x + y = integer

;
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12£ - 28 .

hence —^ =mteger *>

g* ^
that is, x - 2 +—— = integer

;

Qfc ^
.-.

'——= integer =_p suppose;

!

.*. X = \\p + §

and, from (1), y — 14p + 5

This is called the general solution of the equation, and by giving to p
any positive integral value or zero, we obtain positive integral values of x
and y ; thus we have

p = 0, 1, 2, 3,

.t= 6, 17, 28, 39,

y = 5, 19, 33, 47,

the number of solutions being infinite.

Example 3. In how many ways can £5 be paid in half-crowns and florins?

Let x be the number of half-crowns, y the number of florins ; then

5^ + 4y= 200;

••• x+y+\= 5°;

x .

.' . 2 — integer= 2^ suppose ;

.*. x=4p,

and y = 50-5p.

Solutions are obtained by ascribing to p the values 1, 2, 3, ...9; and
therefore the number of ways is 9. If, however, the sum may be paid either

in half-crowns or florins, p may also have the values and 10. If ^ = 0,

then x= 0, and the sum is paid entirely in florins ; if p= 10, then y = 0, and
the sum is paid entirely in half-crowns. Thus if zero values of x and y are
admissible the number of ways is 11.

Example 4. The expenses of a party numbering 43 were £5. 14s. Qd. ; if

each man paid 5s., each woman 2s. 6d., and each child Is., how many were
there of each?

Let x, y, z denote the number of men, women, and children, respectively;

then we have
x + y + z= 43 (1),

10.r + 5?/ + 2z = 229.

Eliminating z, we obtain 8x + By = 143.

The general solution of this equation is

x=Sp + l,

y = 45-8p;
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Hence by substituting in (1), we obtain

z = 5p-3.
Here p cannot be negative or zero, but may have positive integral values
from 1 to 5. Thus

p= 1, 2, 3, 4, 5;

x- 4, 7, 10, 13, 16; *

y = 37, 29, 21, 13, 5;

2=2, 7, 12, 17, 22.

EXAMPLES. X. d.

Solve in positive integers

:

1. 3.i + 8y= 103. 2. 5#+2y=53. 3. 7.>;+ 12y=152.

4. l&P+lly=414 5. 23a?+25y=915. 6. 4L>;+ 47y = 2191.

Find the general solution in positive integers, and the least values
of x and y which satisfy the equations

:

7. 5.v-7y= 3. 8. 6a?-13y=l. 9. 8#-2ty=33.

10. I7y-13#=0. 11. 19y-23a?=7. 12. 77y-3Qa?=295.

13. A farmer spends £752 in buying horses and cows ; if each horse
costs £37 and each cow £23, how many of each does he buy ?

14. In how many ways can £5 be paid in shillings and sixpences,
including zero solutions ?

15. Divide 81 into two parts so that one may be a multiple of 8
and the other of 5.

16. What is the simplest way for a person who has only guineas
to pay 105. 6d. to another who has only half-crowns ?

17. Find a number which being divided by 39 gives a remainder 16,
and by 56 a remainder 27. How many such numbers are there ?

18. What is the smallest number of florins that must be given to
discharge a debt of £1. (5s. 6d., if the change is to be paid in half-crowns
only?

19. Divide 136 into two parts one of which when divided by 5
leaves remainder 2, and the other divided by 8 leaves remainder 3.

20. I buy 40 animals consisting of rams at £4, pigs at £2, and oxen
at £17 : if I spend £301, how many of each do I buy ?

21. In my pocket I have 27 coins, which are sovereigns, half-crowns
or shillings, and the amount I have is £5. 05. 6d. ; how many coins of

each sort have I ?

H. H. A. 8



CHAPTER XL

Permutations and Combinations.

139. Each of the arrangements which can be made by taking

some or all of a number of things is called a permutation.

Each of the groups or selections which can be made by taking

some or all of a number of things is called a combination.

Thus the •permutations which can be made by taking the

letters a, b, c, d two at a time are twelve in number, namely,

ab, ac, ad, be, bd, cd,

ba, ca, da, cb, db, dc

;

each of these presenting a different arrangement of two letters.

The combinations which can be made by taking the letters

a, b, c, d two at a time are six in number : namely,

ab, ac, ad, be, bd, cd;

each of these presenting a different selection of two letters.

From this it appears that in forming combinations we are only

concerned with the number of things each selection contains

;

whereas in forming permutations we have also to consider the

order of the things which make up each arrangement; for instance,

if from four letters a, b, c, d we make a selection of three, such

as abc, this single combination admits of being arranged in the

following ways :

abc, acb, bca, bac, cab, cba,

and so gives rise to six different permutations.



PERMUTATIONS AND COMBINATIONS. 115

140. Before discussing the general propositions of this

chapter there is an important principle which we proceed to

explain and illustrate by a few numerical examples.

If one operation can be performed in m ivays, and (when it

has been performed in any one of these ways) a second operation

can then be performed in n tvays ; the number of ways of per-

forming the two operations ivill be m x n.

If the first operation be performed in any one way, we can

associate with this any of the n ways of performing the second

operation : and thus we shall have n ways of performing the two
operations without considering more than one way of performing

the first; and so, corresponding to each of the m ways of per-

forming the first operation, we shall have n ways of performing

the two; hence altogether the number of ways in which the two
operations can be performed is represented by the product

m x n.

Example 1. There are 10 steamers plying between Liverpool and Dublin;
in how many ways can a man go from Liverpool to Dublin and return by a
different steamer?

There are ten ways of making the first passage ; and with each of these

there is a choice of nine ways of returning (since the man is not to come back
by the same steamer) ; hence the number of ways of making the two journeys
is 10 x 9, or 90.

This principle may easily be extended to the case in which
there are more than two operations each of which can be per-

formed in a given number of ways.

Example 2. Three travellers arrive at a town where there are four
hotels; in how many ways can they take up their quarters, each at a
different hotel?

The first traveller has choice of four hotels, and when he has made his

selection in any one way, the second traveller has a choice of three ; there-

fore the first two can make their choice in 4 x 3 ways ; and with any one such
choice the third traveller can select his hotel in 2 ways ; hence the required

number of ways is 4 x 3 x 2, or 24.

141. To find the number ofpermutations of \\ dissimilar things

taken r at a time.

This is the same thing as finding the number of ways in which

we can fill up r places when we have n different things at our

disposal.

The first place may be tilled up in n ways, for any one of the n
things may be taken ; when it has been filled up in any one of

8—2
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these ways, the second place can then be filled up in n - 1 ways
;

and since each way of filling up the first place can be associated

with each way of filling up the second, the number of ways in

which the first two places can be filled up is given by the product

n (n - 1). And when the first two places have been filled up in

any way, the third place can be filled up in h — 2 ways. And
reasoning as before, the number of ways in which three places can

be filled up is n (n - 1) (n - 2).

Proceeding thus, and noticing that a new factor is introduced

with each new place filled up, and that at any stage the number
of factors is the same as the number of places filled up, we shall

have the number of ways in which r places can be filled up

equal to

n (n- l)(n— 2) to r factors
;

and the rth factor is

n — (r— 1), or n — r+1.

Therefore the number of permutations of n things taken r at

a time is

n{n- 1) (n- 2) (n-r + 1).

Cor. The number of permutations of n things taken all at

a time is

n (n - 1) (?i - 2) to n factors,

or n(n — Y)(n—2) 3.2.1.

It is usual to denote this product by the symbol \n, which is

read "factorial n." Also n\ is sometimes used for \n.

142. We shall in future denote the number of permutations

of n things taken r at a time by the symbol nP
r , so that

"P
r
= w(w-l)(w-2) (n-r + 1);

also "P = \n.

In working numerical examples it is useful to notice that the

suffix in the symbol nP
r
always denotes the number of factors in

the formula we are using.

143. The number of permutations of n things taken r at

a time may also be found in the following manner.

Let "P
r
represent the number of permutations of n things

taken r at a time.
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Suppose we form all the permutations of n things t;iken r — 1

at a time ; the number of these will be "P .' r—l

With each of these put one of the remaining n — r + 1 tilings.

Each time we do this we shall get one permutation of u things
r at a time; and therefore the whole number of the permutations
of n things r at a time is

nP
r _ ]

x (n - r + 1) ; that is,

By writing r—l for r in this formula, we obtain

"P_
1

= '^
r_ 2

x(n-r-f2),

similarly, 'P = 'P
r_a x (n - r + 3),

"P^P.x (71 -I),

"P
x
=7l.

Multiply together the vertical columns and cancel like factors

from each side, and we obtain

nP
r
= n(n-l)(n-2) (n-r+l).

Example 1. Four persons enter a railway carriage in which there are six

seats ; in how many ways can they take their places ?

The first person may seat himself in 6 ways ; and then the second person
in 5 ; the third in 4 ; and the fourth in 3 ; and since each of these ways may
be associated with each of the others, the required answer is 6x5x4x3,
or 360.

Example 2. How many different numbers can be formed by using six out

of the nine digits 1, 2, 3, ...9?

Here we have 9 different things and we have to find the number of per-

mutations of them taken 6 at a time
;

.
*

. the required result = 9P6

=9x8x7x6x5x4
= 60480.

144. To find the number of combinations of n dissimilar

tilings taken r at a time.

Let "C
r
denote the required number of combinations.

Then each of these combinations consists of a group of r

dissimilar things which can be arranged among themselves in

|r ways. [Art. 142.]
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Hence "C
r
x \r is equal to the number of arrangements of n

things taken rata time ; that is,

*C x\r = "P
r

|

r

= n (n — 1) (n — 2) . . . (n - r + 1) ;

_
tt(w-l)(w-2)...(w-r+l)

|r
V '"

Cor. This formula for
nC

r
may also be written in a different

form ; for if we multiply the numerator and the denominator by
\n — r we obtain

n (n - 1) (n - 2) ... {n - r + 1) x
\

n — r

\r n — r

The numerator now consists of the product of all the natural

numbers from n to 1 ;

\n
.'. "C

r
=

.
~ (2).

It will be convenient to remember both these expressions for
nC

r , using (1) in all cases where a numerical result is required,

and (2) when it is sufficient to leave it in an algebraical shaj)e.

Note. If in formula (2) we put r= n, we have

\n i

n ~jn|_0" |0'

but nCn =l, so that if the formula is to be true for r= n, the symbol 10 must

be considered as equivalent to 1.

Example. From 12 books in how many ways can a selection of 5 be
made, (1) when one specified book is always included, (2) when one specified

book is always excluded ?

(1) Since the specified book is to be included in every selection, we
have only to choose 4 out of the remaining 11.

Hence the number of ways = n C4

11x10 x9x8
~ 1x2x3x4

= 330.
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(2) Since the specified book is always to be excluded, we have to

select the 5 books out of the remaining 11.

Hence the number of ways = nC6

_ 11x10x9x8x7
1x2x3x4x5

= 462.

145. The number of combinations of n things r at a time is

equal to the number of combinations of\\ things n — r at a time.

In making all the possible combinations of n things, to each
group of r things we select, there is left a corresponding group of

n - r things ; that is, the number of combinations of n things

r at a time is the same as the number of combinations of n things

n — r at a time

;

.-. "C = nC .
r n — r

The proposition may also be proved as follows :

\n
"0 _ r

= =— [Art. 144.1
n — r n — (n - r)

n

n — r r

Such combinations are called complementary.

Note. Put r=w, then ttC = nCn=l.

The result we have just proved is useful in enabling us to

abridge arithmetical work.

Example. Out of 14 men in how many ways can an eleven be chosen?

The required number= 14CU

14 x 13 x 12

1x2x3

= 364.

If we had made use of the formula uCn , we should have had to reduce au
expression whose numerator and denominator each contained 11 factors.
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146. Tojind the number of ways in which m + n things can be

divided into two groups containing in and n things respectively.

This is clearly equivalent to finding the number of combi-

nations of ra + n things ra at a time, for every time we select

one group of ra things we leave a group of n things behind.

Ira + n
Thus the required number = h=

1
ra \7b

Note. If n= m, the groups are equal, and in this case the number of

\2m
different ways of subdivision is -—~—

[9
; for in any one way it is possible

to interchange the two groups without obtaining a new distribution.

147. To jind the number of ways in which m + n + p things can

be divided into three groups containing m, n, p things severally.

First divide ra + n + p things into two groups containing m
and n +p things respectively : the number of ways in which this

\m + n+p
can be done is -r=

\m n+p

Then the number of ways in which the group of n+p things

can be divided into two groups containing n and p things respec-

\n+p
tively is

n p

Hence the number of ways in which the subdivision into three

groups containing m, n, p things can be made is

m + n+p n+p \m + n + ]>

x , ,
- , or

in n + p \n \p
5

Ira \n \p

J3wi
Note. If we put ?i=p = m. we obtain :—r=-|— ; hut this formula regards

as different all the possible orders in which ~th.e three groups can occur in

any one mode of subdivision. And since there are 13 such orders cor-

responding to each mode of subdivision, the number of different ways in

|3ot

which subdivision into three equal groups can be made is -

—

r^f—r^ •

771 771 m |3

Example. The number of ways in which 15 recruits can be divided into
115

three equal groups is , -
---

; and the number of ways in which they

I

15
can be drafted into three different regiments, five into each, is -_—Hr—

.

[6
J

5 [6
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148. In the examples which follow it is important to notice
that the formula for 'permutations should not be used until the
suitable selections required by the question have been made.

Example 1. From 7 Englishmen and 4 Americans a committee of is to
be formed; in how many ways can this be done, (1) when the committee con-
tains exactly 2 Americans, (2) at least 2 Americans ?

(1) "We have to choose 2 Americans and 4 Englishmen.

The number of ways in which the Americans can be chosen is 4C, ; and
the number of ways in which the Englishmen can be chosen is 7C4 . Each of
the first groups can be associated with each of the second ; hence
the required number of ways = 4C

2
x 7C4

li \1=
|~2"[2

X
TTJ3

17
'J^ = 210.

|2|2|3

(2) The committee may contain 2, 3, or 4 Americans.

"We shall exhaust all the suitable combinations by forming all the groups
containing 2 Americans and 4 Englishmen ; then 3 Americans and 3 English-
men; and lastly 4 Americans and 2 Englishmen.

The sum of the three results will give the answer. Hence the required
number of ways = *C2 x

7C4 + 4C3 x
7 (7

3 +
4C

4 x
7C,

17 |4 17 17
X TTT^ + TK X rl

-
^ + 1 X

[2 1 2 [4 j_3 j_3 |3|4 [2)5

= 210 + 140 + 21 = 371.

In this Example we have only to make use of the suitable formulae for
combinations, for we are not concerned with the possible arrangements of the
members of the committee among themselves.

Example 2. Out of 7 consonants and 4 vowels, how many words can be
made each containing 3 consonants and 2 vowels?

The number of ways of choosing the three consonants is 7C3 , and the
number of ways of choosing the 2 vowels is *Ca ; and since each of the first

groups can be associated with each of the second, the number of combined
groups, each containing 3 consonants and 2 vowels, is 7C3 x

4C2 .

Further, each of these groups contains 5 letters, which may be arranged
among themselves in [5 ways. Hence

the required number of words = 7C3 x
4C2 x Jo

~|3|4
X
[2]2

X
"

= 5x|7
r

= 25200.
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Example 3. How many words can be formed out of the letters article, so

that the vowels occupy the even places?

Here we have to put the 3 vowels in 3 specified places, and the 4 conso-

nants in the 4 remaining places ; the first operation can be done in
1

3 ways,

and the second in
1
4 . Hence

the required number of words =|3x[4

= 144.

In this Example the formula for permutations is immediately applicable,

because by the statement of the question there is but one way of choosing the

vowels, and one way of choosing the consonants.

EXAMPLES XI. a.

1. In how many ways can a consonant and a vowel be chosen out of

the letters of the word courage?

2. There are 8 candidates for a Classical, 7 for a Mathematical, and
4 for a Natural Science Scholarship. In how many ways can the

Scholarships be awarded?

3. Find the value of 8P
7 ,

25P5 ,

24
<74 ,

19CU .

4. How many different arrangements can be made by taking 5

of the letters of the word equation ?

5. If four times the number of permutations of n things 3 together

is equal to five times the number of permutations of n — 1 things

3 together, find n.

6. How many permutations can be made out of the letters of

the word triangle? How many of these will begin with t and end
with e ?

7. How many different selections can be made by taking four of

the digits 3, 4, 7, 5, 8, 1 ? How many different numbers can be formed
with four of these digits ?

8. If 2nC3 :
nOj= 44 : 3, find n.

9. How many changes can be rung with a peal of 5 bells ?

10. How many changes can be rung with a peal of 7 bells, the tenor

always being last ?

11. On how many nights may a watch of 4 men be drafted from a
crew of 24, so that no two watches are identical ? On how many of these

would any one man be taken?

12. How many arrangements can be made out of the letters of the
wrord draught, the vowels never being separated ?
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13. In a town council there are 25 councillors and 10 aldermen
;

how many committees can be formed each consisting of 5 councillors
and 3 aldermen ?

14. Out of the letters A, B, C, p, q, r how many arrangements can
be made (1) beginning with a capital, (2) beginning and ending with a
capital ]

15. Find the number of combinations of 50 things 4G at a time.

16. If nC12
= nCs , find nC17 ,

22
<7n .

17. In how many ways can the letters of the word vowels be
arranged, if the letters oe can only occupy odd places ]

18. From 4 officers and 8 privates, in how many ways can 6 be

chosen (1) to include exactly one officer, (2) to include at least one
officer?

19. In how many ways can a party of 4 or more be selected from
10 persons ?

20. If ™Cr= lsCr + 2 , find'<75 .

21. Out of 25 consonants and 5 vowels how many words can be
formed each consisting of 2 consonants and 3 vowels ?

22. In a library there are 20 Latin and 6 Greek books; in how
many ways can a group of 5 consisting of 3 Latin and 2 Greek books be
placed on a shelf ?

23. In how many ways can 12 things be divided equally among 4
persons ?

24. From 3 capitals, 5 consonants, and 4 vowels, how many words
can be made, each containing 3 consonants and 2 vowels, and beginning
with a capital ?

25. At an election three districts are to be canvassed by 10, 15, and
20 men respectively. If 45 men volunteer, in how many ways can they
be allotted to the different districts ?

26. In how many ways can 4 Latin and 1 English book be placed
on a shelf so that the English book is always in the middle, the selec-

tion being made from 7 Latin and 3 English books?

27. A boat is to be manned by eight men, of whom 2 can only row-

on bow side and 1 can only row on stroke side; in how many ways can
the crew be arranged ?

28. There are two works each of 3 volumes, and two works each of
2 volumes ; in how many ways can the 10 books be placed on a shelf so

that volumes of the same work are not separated ?

29. In how many wrays can 10 examination papers be arranged so
that the befit and worst papers never come together?
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30. An eight-oared boat is to be manned by a crew chosen from 11

men, of whom 3 can steer but cannot row, and the rest can row but can-

not steer. In how many ways can the crew be arranged, if two of the

men can only row on bow side?

31. Prove that the number of ways in which p positive and n
negative signs may be placed in a row so that no two negative signs shall

be together is p + 1Cn .

32. If 56Pr + 6 :
54Pr + 3

= 30800 : 1, find r.

33. How many different signals can be made by hoisting 6 differ-

ently coloured flags one above the other, when any number of them
may be hoisted at once ?

34. U^C2r :
24C2r_4

= 225 : 11, find r.

149. Hitherto, in the formulae we have proved, the things

have been regarded as unlike. Before considering cases in which
some one or more sets of things may be like, it is necessary to

point out exactly in what sense the words like and unlike are

used. When we speak of things being dissimilar, different, un-

like, we imply that the things are visibly unlike, so as to be

easily distinguishable from each other. On the other hand we
shall always use the term like things to denote such as are alike

to the eye and cannot be distinguished from each other. For
instance, in Ex. 2, Art. 1-48, the consonants and the vowels may
be said each to consist of a group of things united by a common
characteristic, and thus in a certain sense to be of the same kind;

but they cannot be regarded as like things, because there is an
individuality existing among the things of each group which
makes them easily distinguishable from each other. Hence, in

the final stage of the example we considered each group to

consist of five dissimilar things and therefore capable of [5

arrangements among themselves. [Art. 141 Cor.]

150. Suppose we have to find all the possible ways of arrang-

ing 12 books on a shelf, 5 of them being Latin, 4 English, and
the remainder in different languages.

The books in each language may be regarded as belonging to

one class, united by a common characteristic ; but if they were
distinguishable from each other, the number of permutations

would be )12, since for the purpose of arrangement among them-

selves they are essentially different.
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If, however, the books in the same language are not dis-

tinguishable from each other, we should have to find the number
of ways in which 12 things can be arranged among themselves,
when 5 of them are exactly alike of one kind, and 4 exactly alike,

of a second kind : a problem which is not directly included in any
of the cases we have previously considered.

151. To find the number of ways in which n things may be

arranged among themselves, taking them all at a time, when p
of the things are exactly alike of one kind, q of them exactly

alike of another kind, r of them exactly alike of a third kind, and
the rest all different.

Let there be n letters ; suppose p of them to be a, q of them
to be b, r of them to be c, and the rest to be unlike.

Let x be the required number of permutations ; then if in

any one of these permutations the_p letters a were replaced by p
unlike letters different from any of the rest, from this single

permutation, without altering the position of any of the remaining
letters, we could form I p new permutations. Hence if this change

were made in each of the x permutations we should obtain x x \p

permutations.

Similarly, if the q letters b were replaced by q unlike letters,

the number of permutations would be

x x \p x |<7.

In like manner, by replacing the r letters c by r unlike letters,

we should finally obtain x x \p x \q x \r permutations.

But the things are now all different, and therefore admit of \n

permutations among themselves. Hence

x x \p x \q x r- \n;

r
that is, x — ~.

—

'

•

\p \g p

which is the required number of permutations.

Any case in which the things are not all different may be

treated similarly.
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Example 1. How many different permutations can be made out of the

letters of the word assassination taken all together ?

We have here 13 letters of which 4 are s, 3 are a, 2 are i, and 2 are n.

Hence the number of permutations

~|^[3|2j£

= 13.11.10.9.8.7.3.5

= 1001 x 10800= 10810800.

Example 2. How many numbers can be formed with the digits

1, 2, 3, 4, 3, 2, 1, so that the odd digits always occupy the odd places?

The odd digits 1, 3, 3, 1 can be arranged in their four places in

l^2
ways (1) -

The even digits 2, 4, 2 can be arranged in their three places in

13

y^
ways (2).

Each of the ways in (1) can be associated with each of the ways in (2).

14 13

Hence the required number= y^=x- x -j^= 6 x 3= 18.

152. To find the number of permutations of n things r at a

time, when each thing may be repeated once, twice, up to r

times in any arrangement.

Here we have to consider the number of ways in which r

places can be filled up when we have n different things at our

disposal, each of the n things being used as often as we please in

any arrangement.

The first place may be filled up in n ways, and, when it has

been filled up in any one way, the second place may also be filled

up in n ways, since we are not precluded from using the same
thing again. Therefore the number of ways in which the first

two places can be filled up iswxn or n2
. The third place can

also be filled up in n ways, and therefore the first three places in

n3 ways.

Proceeding in this manner, and noticing that at any stage the

index of n is always the same as the number of places filled up,

we shall have the number of ways in which the r places can be

filled up equal to nr
.
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Example. In how many ways can 5 prizes be given away to 4 boys, when
each boy is eligible for all the prizes?

Any one of the prizes can be given in 4 ways; and then any one of the;

remaining prizes can also be given in 4 ways, since it may be obtained by the
boy who has already received a prize. Thus two prizes can be given away in
4a ways, three prizes in 4 :! ways, and so on. Hence the 5 prizes can be given
away in 45

, or 1024 ways.

153. To find the total number of ways in which it is possible
to make a selection by taking some or all of \\ things.

Each tiling may be dealt with in two ways, for it may either

be taken or left; and since either way of dealing with any one
thing may be associated with either way of dealing with eacli one
of the others, the number of selections is

2x2x2x2 to n factors.

But this includes the case in which all the things are left,

therefore, rejecting this case, the total number of ways is 2"-l.

This is often spoken of as "the total number of combinations"
of n things.

Example. A man has 6 friends ; in how many ways may he invite one or
more of them to dinner?

He has to select some or all of his 6 friends ; and therefore the number of
ways is 2s - 1, or 63.

This result can be verified in the following manner.

The guests may be invited singly, in twos, threes,
; therefore the

number of selections = 6C
1 + 6C

2 + 6C3 + 6C4 + 6C
5 + <>C6

= 6 + 15 + 20 + 15 + 6 + 1 = 63.

154. To findfor what value of r the number of combinations
of n things r at a time is greatest.

Since "C =
^(?l - 1 )(n - 2

) (w-r + 2)(n-r + l)

1.2.3 (r-l)r

, _
n(n-l)(n-2) (w-r + 2)

1. 2.3 (r-1)

"C = nC . x
n — r + 1

r

The multiplying factor may be written —- - 1,

which shews that it decreases as r increases. Hence as r receives



128 HIGHER ALGEBRA.

the values 1, 2, 3 in succession,
nG

r
is continually increased

71 4- 1
until 1 becomes equal to 1 or less than 1.

r

Now 1^1,
r

i
71+1 ^

so long as > z
;

r

that is, ——
- > r.

We have to choose the greatest value of r consistent with
this inequality.

(1) Let n be even, and equal to 2m; then

n + 1 2m +1 1

-2 2—

—

+
s ;

and for all values of ?• up to ?n inclusive this is greater than r.

Hence by putting r — m = —
, we find that the greatest number of

combinations is "C .
n

2

(2) Let n be odd, and equal to 2m + 1 ; then

n + 1 2m + 2 -—=-5—» + li

and for all values of r up to m inclusive this is greater than r

;

but when r - m + 1 the multiplying factor becomes equal to 1, and

*C.= nC : that is, "C +
- nC •

mi+I m '
' n+ 1 7i—l J

2 2

and therefore the number of combinations is greatest when the

things are taken —— , or —^— at a time; the result being the

same in the two cases.

155. The formula for the number of combinations of n things
r at a time may be found without assuming the formula for the
numbes of permutations.

Let "C
r
denote the number of combinations of n things taken

r at a time; and let the n things be denoted by the letters

a, b, c, d,
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Take away a; then with tin 1 remaining letters we cm form
"~ XC combinations of n— 1 letters taken r - 1 at a time. With
eaeli of these write a; thus we see that of the combinations

of n tilings r at a time, the number of those which contain

a is
w~ lC

x
\ similarly the number of those which contain

b is
n ~ xC , : and so for each of the n letters.

Tlierefore n x "~*Cr_ l
is equal to the number of combinations

r at a time which contain a, together with those that contain b,

those that contain c, and so on.

But by forming the combinations in this manner, each par-

ticular one will be repeated r times. For instance, if r=3, the
combination abc will be found anions; those containing a, amonir
those containing b, and among those containing c. Hence

*c= n-xc
r 1

x-.
r r— i .,

By writing u — 1 and r— 1 instead of n and r respectively,

ni 1

r-l°
»-2

Similarly, -V^=^G
r_z x

-

n— r + 2/~1 _n-r + \ri U — T + o
>.

2 ^i 2
;

and finally,
n - r+1C

1
=»-r+ 1.

Multiply together the vertical columns and cancel like factors

from each side ; thus

"C .
n (rc-l)(n-2) (n-r+ l)

r(r-l)(r-2) 1

156. To find the total number of ways in which it is -possible

to make a selection by taking some or all out qfip + c
x
+r +

tilings, ivJierenf-p are alike of one kind, q alike of a second kind, r

alike of a third kind; and so on.

The p things may be disposed of in p + 1 ways
;
for wo may

take 0, 1, 2, 3, p °f thorn. Similarly the q things may be

disposed of in q + \ ways; the r things in r+1 ways; and

so on.

H. II. A. 9
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Hence the number of Avays in which all the tilings may be

disposed of is (^ + 1) (q + 1) (r + 1)

But this includes the case in which none of the things are

taken ; therefore, rejecting this case, the total number of

ways is

(jp + l)fe+l)(r + .l) -1.

157. A general formula expressing the number of permuta-

tions, or combinations, of n things taken r at a time, when the

things are not all different, may be somewhat complicated ; but a

particular case may be solved in the following manner.

Example. Find the number of ways in which (1) a selection, (2) an ar-

rangement, of four letters can be made from the letters of the word

proportion.

There are 10 letters of six different sorts, namely o, o,o; p,p; r, r; t; i; n.

In finding groups of four these may be classified as follows

:

(1) Three alike, one different.

(2) Two alike, two others alike.

(3) Two alike, the other two different.

(4) All four different.

(1) The selection can be made in 5 ways ; for each of the five letters,

p, r, t, i
s
n, can be taken with the single group of the three like letters o.

(2) The selection can be made in 3C2 ways ; for we have to choose two out

of the three pairs o, o; p, p; r, r. This" gives 3 selections.

(3) This selection can be made in 3 x 10 ways ; for we select one of the

3 pairs, and then two from the remaining 5 letters. This gives 30 selections.

(1) This selection can be made in 6C4 ways, as we have to take 4 different

letters to choose from the six o, p, r, t, i, n. This gives 15 selections.

Thus the total number of selections is 5 + 3 + 30 + 15 ; that is, 53.

In finding the different arrangements of 4 letters we have to permute in

all possible ways each of the foregoing groups.

(1) gives rise to 5 x = , or 20 arrangements.

(2) gives rise to 3 x -^=^ , or 18 arrangements.

(3) gives rise to 30 x -=-
, or 360 arrangements.

(4) gives rise to 15 x j4 , or 3G0 arrangements.

Thus the total number of arrangements is 20 + 18 + 360 + 360; that is, 758.
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EXAMPLES. XI. b.

1. Find the number of arrangements that can he made out of the

letters of the words

(1) independence, (2) superstitious,

(3) institutions.

2. In how many ways can 17 billiard balls be arranged, if 7 of

them are black, 6 red, and 4 white %

3. A room is to be decorated with fourteen flags ; if 2 of them are

blue, 3 red, 2 white, 3 green, 2 yellow, and 2 purple, in how many ways
can they be hung?

4. How many numbers greater than a million can be formed with
the digits 2, 3, 0, 3, 4, 2, 3?

5. Find the number of arrangements which can be made out of the

letters of the word algebra, without altering the relative positions of

vowels and consonants.

6. On three different days a man has to drive to a railway station,

and he can choose from 5 conveyances ; in how many ways can he make
the three journeys ?

7. I have counters of n different colours, red, white, blue, ; in

how many ways can I make an arrangement consisting of r counters,

supposing that there are at least r of each different colour ?

8. In a steamer there are stalls for 12 animals, and there are

cows, horses, and calves (not less than 12 of each) ready to be shipped;
in how many ways can the shipload be made?

9. In how many ways can n things be given to p persons, when
there is no restriction as to the number of things each may receive ?

10. In how many ways can five things be divided between two
persons ?

11. How many different arrangements can be made out of tl ie letters

in the expression azb2c* when written at full length?

12. A letter lock consists of three rings each marked with fifteen

different letters ; find in how many ways it is possible to make an
unsuccessful attempt to open the lock.

13. Find the number of triangles which can be formed by joining

three angular points of a quindecagon.

14. A library has a copies of one book, b copies of each of two
books, c copies of each of three books, and single copies of d books. In
how many ways can these books be distributed, if all are out at once I

15. How many numbers less than 10000 can be made with the

eight digits 1, 2, 3, 0, 4, 5, 6, 7 ?

16. In how many ways can the following prizes be given away to a

class of 20 boys: first and second Classical, first and second Mathe-
matical, first Science, and first French ?

9—2
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17. A telegraph has 5 arms and each arm is capable of 4 distinct

positions, including the position of rest ; what is the total number of

signals that can be made ?

18. In how many ways can 7 persons form a ring? In how many
ways can 7 Englishmen and 7 Americans sit down at a round table, no
two Americans being together?

19. In how many ways is it possible to draw a sum of money from

a bag containing a sovereign, a half-sovereign, a crown, a florin, a shilling,

a penny, and a farthing?

20. From 3 cocoa nuts, 4 apples, and 2 oranges, how many selec-

tions of fruit can be made, taking at least one of each kind ?

21. Find the number of different ways of dividing mn things into

n equal groups.

22. How many signals can be made by hoisting 4 flags of different

colours one above the other, when any number of them may be hoisted

at once ? How many with 5 flags ?

23. Find the number of permutations which can be formed out of

the letters of the word series taken three together ?

24. There are p points in a plane, no three of which are in the same
straight line with the exception of q, which are all in the same straight

line; find the number (1) of straight lines, (2) of triangles which result

from joining them.

25. There are p points in space, no four of which are in the same
plane with the exception of q, which are all in the same plane; find

how many planes there are each containing three of the points.

26. There are n different books, and p copies of each; find the

number of ways in which a selection can be made from them.

27. Find the number of selections and of arrangements that can be

made by taking 4 letters from the word expression.

28. How many permutations of 4 letters can be made out of the

letters of the word examination ?

29. Find the sum of all numbers greater than 10000 formed by
using the digits 1, 3, 5, 7, 9, no digit being repeated in any number.

30. Find the sum of all numbers greater than 10000 formed by
using the digits 0, 2, 4, 6, 8, no digit being repeated in any number.

31. If of p + q + r things p be alike, and q be alike, and the rest
different, shew that the total number of combinations is

(p + l)(q+l)2 r -l.

32. Shew that the number of permutations which can be formed
from 2n letters which are either a's or 6's is greatest when the number
of a's is equal to the number of Z>'s.

33. If the n -f 1 numbers a, b, c, d, be all different, and each of
them a prime number, prove that the number of different factors of the
expression ambcd is (m + 1) 2W— 1.



CHAPTER XIT.

Mathematical Induction.

158. Many important mathematical formula? are not easily

demonstrated by a direct mode of proof; in such cases we fre-

quently find it convenient to employ a method of proof known as

mathematical induction, which we shall now illustrate.

Example 1. Suppose it is required to prove that the sum of the cubes

of the first n natural numbers is equal to <—^——
'J-

.

We can easily see by trial that the statement is true in simple cases, such
as when re=l, or 2, or 3 ; and from this we might be led to conjecture that

the formula was true in all cases. Assume that it is true when n terms are

taken ; that is, suppose

13 + 23 + 33 + to itteims=|
H

(
;t+1

)j

3

.

Add the («+ l) th term, that is, (n+ 1)
3 to each side ; then

13 + 23 + 33 + to n + 1 terms =j
n ^

2

+1
^

|
+(n+iy

= {n + iy-('j+n + l\

\-

(n+l)8 (na+4n+4)
4

-\
\
(n + l)(K + 2) )\

2 !

'

which is of the same form as the result we assumed to be true for n terms,

n + 1 taking the place of n ; in other words, if the result is true when we take

a certain number of terms, whatever that number may be, it is true when we
increase that number by one; but we see that it is true when 3 terms are

taken ; therefore it is true when 4 terms are taken ; it is therefore true when
5 terms are taken; and so on. Thus the result is true universally.
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Example 2. To determine the product of n binomial factors of the form
x + a.

By actual multiplication we have

(x + a) (x + b) (x + c) = x3 + (a + b + c) x2 + (ab + bc + ca) x + abc
;

(x+a) (x + b) (x + c) (x + d) = x*+(a + b + c + d)x3

+ (ab + ac+ ad + bc+ bd + cd) x~

+ (abc + abd + acd + bed) x + abed.

In these results we observe that the following laws hold

:

1. The number of terms on the right is one more than the number of

binomial factors on the left.

2. The index of x in the first term is the same as the number of

binomial factors ; and in each of the other terms the index is one less than
that of the preceding term.

3. The coefficient of the first term is unity ; the coefficient of the second

term is the sum of the letters a, b, c, ; the coefficient of the third

term is the sum of the products of these letters taken two at a time;

the coefficient of the fourth term is the sum of their products taken three at

a time ; and so on ; the last term is the product of all the letters.

Assume that these laws hold in the case of n - 1 factors ; that is, suppose

(x + a) (x+b)... (x + h) = x71'1 +p1
xn

~2 +p.2x
n~3 +p.ix

n-i + ... +p>n^ ,

where p1
= a + b + c+ ...h;

p.2= ab + ac + ... + ah + bc + bd+ ;

p3
= abc + abd+ ;

pn_x
= abc...h.

Multiply both sides by another factor x + k ; thus

(x + a) (x + b) ... (x + h) (x + k)

= xn + (px + k) xn
~l + (p.2 +px

k)

x

n~* + (p3 + pJc) xn
~3 +... +l^n-x

k.

Now ^i + A;:=(a + & + c + . ..+/*) + &

= sum of all the n letters a, b, c,...k;

p.2+p 1
k=p.2 + k (a + b + ... + h)

= sum of the products taken two at a time of all the

n letters a, b, c, ... k;

p.A +p.2k=p3 + k (ab + ac + . . . + ah + bc + . . .)

= sum of the products taken three at a time of all

the n letters a, b, c, ... k;

2?n_1
A* = product of all the n letters a, b, c, ... k.
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If therefore the laws hold when ?t-l factors are multiplied together
they hold in the case of n factors. But we havo seen that they hold in the
case of 4 factors; therefore they hold for 5 factors; therefore also for 6
factors ; and so on ; thus they hold universally. Therefore

[x + a) (x + b) {x +c) ... (x + k) = x 11 + ,VU_1 + Stfp-* + S.
A
xn~* + . . . + 8n

where S^the sum of all the n letters a, b, c ... Js;

<So= the sum of the products taken two at a time of these n letters.

Sn=the product of all the n letters.

159. Theorems relating to divisibility may often be esta-

blished by induction.

Example. Shew that .-c
u -l is divisible by x-1 for all positive integral

values of n.

x
n -l z'

l-1 -l
By division = xn

~ l
^ —

;J x-1 x-1 *

if therefore xn~l - 1 is divisible by x - 1, then x* - 1 is also divisible by x - 1.

But x'
1 - 1 is divisible by x - 1 ; therefore x3 - 1 is divisible by x - 1 ; there-

fore x 4, - 1 is divisible by^r - 1, and so on ; hence the proposition is established.

Other examples of the same kind will be found in the chapter on the

Theory of Numbers.

1G0. From the foregoing examples it will be seen that the

only theorems to which induction can be applied are those

which admit of successive cases corresponding to the order of

the natural numbers 1, 2, 3, n.

EXAMPLES. XII.

Prove by Induction :

1. 1+3 + 5+ + (2n-l) = n2
.

2. l 2 + 2 2+ 32 + + n2 =i?i(n+l)(2tt+l).

3. 2 + 2 2+ 23 + + 2»= 2(2' l -l).

4. T~o + o~q + q-~T + ton terms = —-^ .1.22.33.4 n+1

5. Prove by Induction that .r
n — y

n is divisible by x+y when n is

even.



CHAPTER XIII.

Binomial Theorem. Positive Integral Index.

161. It may be shewn by actual multiplication that

(x + a) (x + b) (x + c) {x + d)

= x4 + (a + b + c + d) x3 + (ab + ac + ad + bc + bd + cd) x*

+ (abc + abd + acd + bed) x + abed (1).

We may, however, write down this result by inspection ; for the

complete product consists of the sum of a number "of partial pro-

ducts each of which is formed by multiplying together four

letters, one being taken from each of the four factors. If we
examine the way in which the various partial products are

formed, we see that

(1) the term x4
is formed by taking the letter x out of each

of the factors.

(2) the terms involving x3 are formed by taking the letter x
out of any three factors, in every way possible, and one of the

letters a, 6, c, d out of the remaining factor.

(3) the terms involving x2
are formed by taking the letter x

out of any two factors, in every way possible, and two of the

letters a, b, c, d out of the remaining factors.

(4) the terms involving x are formed by taking the letter x
out of any one factor, and three of the letters a, b, c, d out of

the remaining factors.

(5) the term independent of x is the product of all the letters

«, b, c, d. .

Example 1. (x - 2) (x + 3) (x - 5) (x + 9)

= x4 + (- 2 + 3 - 5 + 9) z3 + (- 6 + 10 -18 -15 + 27 -45) a2

+ (30 - 54 + 90 - 135) x + 270

= x4+ 5a;3 - 47.<c
2 - 69z + 270.
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Example 2. Find the coefficient of x* in the product

(x - 3) (* + 5) [x - 1) (x + 2) (x - 8).

The terms involving x* are formed by multiplying together the x in any
three of the factors, and two of the numerical quantities out of the two re-

maining factors ; hence the coefficient is equal to the sum of the products
of the quantities - 3, 5, -1,2, - 8 taken two at a time.

Thus the required coefficient

= -15 + 3- G + 2-1- 5 + 10-40- 2 + 8- 10

= -39.

1G2. If in equation (1) of the preceding article we suppose
b=c=d=a, we obtain

(x + a)
4 = x4 + iax* + 6aV + 4a3

as + a4
.

The method here exemplified of deducing a particular case

from a more general result is one of frequent occurrence in

Mathematics ; for it often happens that it is more easy to prove
a general proposition than it is to prove a particular case of it.

We shall in the next article employ the same method to prove

a formula known as the Binomial Theorem, by which any binomial

of the form x + a can be raised to any assigned positive integral

power.

163. To find the expansion of (x + a)
n
ivhen n is a positive

integer.

Consider the expression

(x + a) (x + b) (x + c) (x + k),

the number of factors being n.

The expansion of this expression is the continued product of

the n factors, x + a, x + b, x + c, x + k, and every term in the

expansion is, of n dimensions, being a product formed by multi-

plying together n letters, one taken from each of these n factors.

The highest power of x is xn
, and is formed by taking the

letter x from each of the n factors.

The terms involving xn~ l are formed by taking the letter x
from any n—\ of the factors, and one of the letters a, b, c, ... k

from the remaining factor ; thus the coefficient of xn ~ 1

in the

final product *is the sum of the letters a, b, c, k; denote it

by^.
The terms involving xn~ 2 are formed by taking the letter x

from any n — 2 of. the factors, and two of the letters a, b, c, ... k

from the two remaining factors ; thus the coefficient of xn~ in

the final product is the sum of the products of the letters

a, b, c, ... k taken two at a time; denote it by S
2

.
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And, generally, the terms involving xn~ r
are formed by taking

the letter x from any n — r of the factors, and r of the letters

a, b, c, ... k from the r remaining factors ; thus the coefficient of

x"~
r
in the final product is the sum of the products of the letters

a, b, c, ...k taken r at a time; denote it by S
r

.

The last term in the product is abc ... k; denote it by S
n

.

Hence (x + a)(x + b)(x + c) (x + k)

= xn + Sxn ~ l + SjxT* + ••• + £ x"~
r + ...+S ,x + S .12 r n—

1

n

In $j the number of terms is n ; in S
2
the number of terms is

the same as the number of combinations of n things 2 at a time

;

that is,
nC

2 ; in S
3
the number of terms is

nC
3 ; and so on.

Now suppose b, c, ... k, each equal to a; then S
l
becomes

"Ca: S, becomes "C\a
2

: S becomes "Cjf: and so on: thus

(x + a)
n = xn + nC

l

axn- 1 + nC
2
a2xn ~ 2 + "C^aV" 3 + . . . + "Ca" ;

substituting for *Clt

nC
2 ,

... we obtain

x» » «-i n(n—l) „ „_„ n(n— \)(n—2) „ n „

(x+a) n = x"+naxn l + -

\

—r-^oV J+ v
1

/v —l a3xn 3
+... + an

,

the series containing n+ 1 terms.

This is the Binomial Theorem, and the expression on the right

is said to be the expansion of (x + a)*.

164. The Binomial Theorem may also be proved as follows :

By induction we can find the product of the n factors

x + a, x + b, x + c, ...x + k as explained in Art. 158, Ex. 2; we
can then deduce the expansion of (x + a)

n
as in Art. 163.

165. The coefficients in the expansion of (x + a)" are very

conveniently expressed by the symbols "C,, "C
2 ,

nC
3 , ...

nC
n

.

We shall, however, sometimes further abbreviate them by omitting

n, and writing (7,, C2 , C3 , ... C
n

. With this notation we have

(x + a)
n = x" + C

x
axn~ l + C

2
a2xn~2 + C

3
a
3xn ~3 + ... + Ca\

If we write — a in the place of a, we obtain

(x -a) n = x" + C\(- a) xn- l + C
2
(-a)2xn- 2+C

3
(-a)3xn- 3

+... + C
n
(-a)

n

= xn - C,axn~ l + C„a2xn- 2 - C,a3xn ~ 3 + ... + (- IYG a\
1 2 3 \ / n

Thus the terms in the expansion of (x + a)
n and (x — a)

n
are

numerically the same, but in (x - a)'
1 they are alternately positive

and negative, and the last term is positive or negative according

as n is even or odd.
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Example 1. Find the expansion of {x + y)
6

.

By the formula,

{x + yf= x« + 8
tfi xhj + 6C^xY + fiC

3 afy
8 + BC4

.r
2

*/
4 + 8

<7e x,f + »Ce
,/'

= z? + 6.1-V + loo;4
?/
2 + 20a;3 ?/

3 + loxhf + Gxi/> + if',

on calculating the values of 6C
1 ,

GC
2 ,

6C3 ,

Example 2. Find the expansion of (a - 2.r) 7 .

[a - 2x)7 = a 7 - 7C
X
ac

' (2x) + 7C2
a5 (2a;)

2 - 7C
3
a4

(2a;)
3 + to 8 terms.

Now remembering that nCr= nCn_r , after calculating the coefficients up to
7C3 , the rest may be written down at once; for 7GX

= 7C^ 7Cr — 7C<x \ and so on.
Hence

(a - 2x)7= a7 - 7aB {2x) + jp| a5 (2xf - \^-\ «4
(2a;)

3 +

= a7 - la6 (2x) + 21a5
(2a;)

2- 35a4 {2xf + 35a 3
(2a-)

4

- 21a2 (2a;)
5 + la (2s)6 - (2.r)~

= a 7 - Ua6x + 84a5
a;

2 - 280a4
.r
3+ 560a3

a;
4

- 672aV + USaafi - 128a;7 .

Example 3. Find the value of

(a + Jtf^ly + (a- Ja- - 1)".

We have here the sum of two expansions whose terms are numerically
the same ; but in the second expansion the second, fourth, sixth, and eighth
terms are negative, and therefore destroy the corresponding terms of the first

expansion. Hence the value

= 2 {a7 + 21a5 (a2 - 1) + 35a3 (a2 - l) 2 + la (a2 - l) 3
}

= 2a (64a6 - 112a4 + 56a2 - 7 ).

166. In the expansion of (x + a)
n

, the coefficient of the second

term is
nC

l
; of the third term is

nG
2 ; of the fourth term is "C

3 ;

and so on ; the suffix in each term being one less than the

number of the term to which it applies ; hence "C
r

is the co-

efficient of the (r + l)th terin. This is called the general term,

because by giving to r different numerical values any of the

coefficients may be found from nC
r ; and by giving to x and a

their appropriate indices any assigned term may be obtained.

Thus the (r + l)
th term may be written

Cjrw, or
»(»-l)("-2)-(»— +»,,-,„,.

t
In applying this formula to any particular case, it should 1><>

observed that the index of a is the same as the svffix of C, and
that the sum of the indices ofx and a is n.
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Example 1. Find the fifth term of (a + 2a;3
)
17

.

The required term = 17C4 a
13

(2a;3
)
4

17.16.15.14

1.2.3.4

= 38080a13 x12
.

xl6ft13 .T
12

Example 2. Find the fourteenth term of (3 - a) 15 .

The required term = 15C13 (3)
2

( - a) 13

= 15C2
x(-9a13

) [Art. 145.]

= - 945a13
.

167. The simplest form of the binomial theorem is the ex-

pansion of (l+x)n
. This is obtained from the general formula

of Art. 163, by writing 1 in the place of x, and x in the place

of a. Thus

(1 + x)
n = l+ HC

i
x + "C

2
x2 + . . . + "C

r
xr + ..+ "Cxn

1
n(n-\)

2
1 + nx + —^

—

zr—i ar + 4- r" '

1.2 ~
+

}

the general term being

n(n—l)(n—2) (n-r+ 1)
,

tb .

The expansion of a binomial may always be made to depend

upon the case in which the first term is unity ; thus

{x + yyJ(X (i +
l)J

V
= xn(l + z)

n
,
where z = -

.

x

Example 1. Find the coefficient of a;
16 in the expansion of (as

2 - 2a;) 10 .

We have (a;
2 - 2a;) 10= a;

20 ( 1 - -V

;

/ 2\ 10

and, since a;
20 multiplies every term in the expansion of ( 1 - -

J
,
we have in

this expansion to seek the coefficient of the term which contains —

.

Hence the required coefficient= 10C4 ( - 2)
4

10 . 9 . 8 . 7
xl6

1.2.3.4

= 3360.

In some cases the following method is simpler.
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Example 2. Find the coefficient of xr in the expansion of (
./•-

i
-

j .

Suppose that xr occurs in tlio (p + l) ,h term.

The (p + 1)°' term = *CP (x-)n -i> (iY
= nCp x"' 1-*".

2*1 — r
But this term contains xr

, and therefore 2n-5p= r, or p = -
5

Thus the required eoellicient= nCiJ
= n

Co,
l _,.

5

n

g(2n-r) = (3n + ?•)

2n — i'

Unless —-— is a positive integer there will be no term containing x r in

the expansion.

1G8. In Art. 163 we deduced the expansion of (x + «)" from
the product of n factors (x + a) (x + b) ... (x + k), and the method
of proof there given is valuable in consequence of the wide gene-
rality of the results obtained. But the following shorter proof of

the Binomial Theorem should be noticed.

It will be seen in Chap. xv. that a similar method is used
to obtain the general term of the expansion of

(a + b + c+ )".

161). To prove the Binomial Theorem.

The expansion of (x + a)'
1

is the product of n factors, each

equal to x + a, and every term in the expansion is of n dimen-

sions, being a product formed by multiplying together n letters,

one taken from each of the n factors. Thus each term involving

x"~
rar

is obtained by taking a out of any r of the factors, and x
out of the remaining n — r factors. Therefore the number of

terms which involve x"~
ra r must be equal to the number of ways

in which r things can be selected out of n ; that is, the coellicient

of xn ~ r
cC is "6'

r
, and by giving to r the values 0, 1, 2, 3, ... n in

succession we obtain the coefficients of all the terms. Hence

(x + a)
n = x l

4-
mC

J
X*- 1a + n

C,,x
n
-°-a

2 + . . . + nC
r
x"-ar + ...+ a",

since *C and "C
n
are each equal to unity.
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EXAMPLES. XIII. a.

Expand the following binomials

:

1. (#-3)5
. 2. (3^+ 2y)

4
. 3. {Zx-yf.

4. (l-3a2
)
6

. 5. {a?+x)\ 6. (1-^j/) 7
.

">• g*-js)'-
n

- (H'- 12
- NT

Write clown and simplify :

13. The 4th term of (a? - 5)
13

. 14. The 10th term of (1 - 2x) 12
.

15. The 12th term of (2# - 1)
13

. 16. The 28th term of (5x+ 8y)
30

.

(a \ 10

17. The 4th term of U + 96
J

.

/ b\ 8

18. The 5th term of (2a -
-J

.

19. The Vth term of (^' - ^-Y .

5. 8

20. The 5th term of
(

—
x
- V-

%

Find the value of

21. (x+ s/2y+ (x-j2)\ 22. (V^^+^-CV^3^-^)5
-

23. (v/2 + l)6 -(N/2-l)
6
. 24. (2-Vr^)6+ (2 + v

/I^^)6
.

a cV\ 10

25. Find the middle term of f
- + -

\x a

^»
26. Find the middle term of ( 1

- "—
j .

27. Find the coefficient of a.
18 in L'V2+— ] .

28. Find the coefficient of x18 in (axA - bx)9
.

( 1\ 15

29. Find the coefficients of x32 and #~ 17 in ( xA - -g
J

/ a3\ 9

30. Find the two middle terms of ( 3a - — ) .
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31. Find the term independent of x in ( -x2 — —
) .

32. Find the 13th term of Ux - \-\ .

33. If x* occurs in the expansion of lx+-\ , find its coefficient.

/ 1 \ 3»i

34. Find the term independent uf ;/; in f x— -., j .

/ 1\'-'
1

35. If xp occurs in the expansion of ( xr+- I , prove that its co-

.... , . \2n
eihcient is -

.

1

j3
(4"-^ \@n+p)

170. In the expansion of (1 4- x)u the coefficients of terms equi-

distantfrom the beginning and end are equal.

The coefficient of the (r + l)
th term from the beginning is

"C..

Tlie (r+l) th term from the end has n + 1— (r+1), or n-r
terms before it; therefore counting from the beginning it is

the (n — r + l)th term, and its coefficient is "C
n _ r , which has been

shewn to be equal to "C
r

. [Art. 145.] Hence the proposition

follows.

171. To find the greatest coefficient in the expansion of
(l + x)»

The coefficient of the general term of (1 +x)" is
mC

r j and we
have only to find for what value of r this is greatest.

By Art. 154, when n is even, the greatest coefficient is "C
n ;

i

and when n is odd, it is "C ,, or "C , , ; these two coefficients

2 2

being equal.

172. To find the greatest term in the expansion of (x + a)".

We have (x + a)" = x" (l + -Y
;

therefore, since xn
multiplies every term in ( 1 + -j ,

it will be

sufficient to find the greatest term in this latter expansion.
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Let the rth and (r+l)th be any two consecutive terms.

The (r+l)th term is obtained by multiplying the rth term by

. — : that is, by ( 1 )
-

. [Art. 166.1
r x \ r J x L

_
J

Vh + ]

The factor — 1 decreases as r increases ; hence the
r

(r+l)th term is not always greater than the rth term, but only

until ( 1 )
- becomes equal to 1, or less than 1.

\ r J x

+ 1Now — 1 - > 1
/n + 1

1
\ a

\ r J x
•j

, n + 1 ., x
so long as 1 > -

;a

.. n + 1 x
that is, > - + 1,

r a

or —— > r ( 1 ).

a

If —— be an integer, denote it by j> j then if r — ]) the

- + 1
a

multiplying factor becomes 1, and the (p + l)th term is equal to the

/>
th

; and these are greater than any other term.

71+1
If —— be not an integer, denote its integral part by q

;

- + 1
a

then the greatest value of r consistent with (1) is q\ hence the

(q + 1
)
th term is the greatest.

Since we are only concerned with the numerically greatest

term, the investigation will be the same for (x-a)"; therefore

in any numerical example it is unnecessary to consider the sign

of the second term of the binomial. Also it will be found best

to work each example independently of the general formula.
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Example 1. If x = -, find the greatest term in the expansion of (1+ I

Denote the ?•"' and (/- + l) tu terms by Tr and Tr±1
respectively; then

9-r 4

hence T7^.l > Tr ,

. 9-r 4
so long as x ->1;°

r 3

that is 36 - 4r> 3r,

or 3G>7r.

The greatest value of r consistent with this is 5 ; hence the greatest term
is the sixth, and its value

3i4
243~

Example 2. Find the greatest term in the expansion of (3- 2a:)9 when

(3- 2^=3^1

-

2

|J;
(2rV
1 -—

J
.

„ „ 9-r+l 2* ...
Here -*r+i= -~o~ x Tr ,

numerically,

10 - r 2— X
3

X ^r,.
;

iience Tr+1 > Tr ,

i
10 ~ r 2

iso long as x - > 1

;

r 6

that is, 20>5r.

Hence for all values of r up to 3, we have Tr+l>Tr ; but if r=4, then

Tr+x = Tr> and these are the greatest terms. Thus the 4"' and 5 th terms are

numerically equal and greater than any other term, and their value

=3"x»C,x f|
J
=36 x 84x8=489888.

H. H. A. 10
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173. To find the sum of the coefficients in the expansion

of (I +x)".

In the identity (1 + a?)
n = 1 + C

x
x + G

2
x2 + C

3
x3 + . . . + C

t
af,

put x = 1 ; thus

2*=l + C
x
+ C

2
+ C

3
+... + C

n

= sum of the coefficients.

Cor. C\ + Cg + Cq + ... + C =T-l;12 3 n '

that is "the total number of combinations of n things" is 2" — 1.

[Art. 153.]

174. To prove that in the expansion of (1 + x)
n

, the sum of
the coefficients of the odd terms is equal to the sum of the coefficients

of the even terms.

In the identity ( 1 + x)
n = 1 + C

x
x + C

2
x2 + C

3
x3 + ... + C x\

put x = - 1 ; thus

= l-C
1
+ a

8
-(7

a
+ (7

4
-C

6
+ ;

... i + 1+ c4
+ ;..... -01 +'Ca + C.+

1
= - (sum of all the coefficients)

—

= 2
n-l

175. The Binomial Theorem may also be applied to expand
expressions which contain more than two terms.

:

Example. Find the expansion of (xz + 2x- l)3.

Regarding 2x - 1 as a single term, the expansion

= (x-)3 + 3 (a2
)

2 (2x - 1) + 3a;2 (2x - l) 2 + (2x - l)
3

= x6+ 6a;3 + 9a;4 - 4c3 - 9a;2 + 6x — l, on reduction.

176. The following example is instructive.

Example. If (1 + x)n= c + c
x
x + c#? + +cn xn ,

find the value of c + 2c
2 + 3c2 + 4c3 + + (n +l)cn (1),

and c1
2 + 2c2

2 + 3c3
2 + +ncn2 (?).

The series (l) = {c + c
1
+ c2 + + cn ) + (c

x + 2c2 + 3c3 + +ncn)

=2w + ?i Jl + (/t-l) + v J_L / + + il

= 2n + n(l + l)n
~ 1

-2n+w.2»-1
.
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To find the value of the series (2), we proceed thus

;

c
x
x + 2c

2
x2 + 3c

3
x* + + ncn x

n

=»«{l-Hn-l),+ <"-^- 8> *»+ + *»-}

= nx (1 + x)"- 1
;

hence, hv chauging x into -
, we have

x

&+£+!*+ +^=!(i+i)*-
1

(s).
X X' Xs Xn X \ xj W

Also cQ + c
1
x + c.2x

2 + + enz
%=(l+z)n (4).

If we multiply together the two series on the left-hand sides of (3) and (4),
we see that in the product the term independent of x is the series (2) ; hence

• n f l\ u_1
the series (2) = term independent of x in - (1 + x) n ( 1 + - I

)l

term independent of x in — (l + x)-'
1
'

1

= coefficient of xn in n (1 + .r)
2>l-l

= ?ix 2n- 1
<

i2n-l

n-1 In- 1

EXAMPLES. XIII. b.

In the following expansions find which is the greatest term

:

1. (x

—

y)
30 when #=11, y=

4

2. (2x - 3y)
28 when x= 9, y= 4.

3. (2a+ b)u when a =4, 6= 5.

5
4. (3 + 2x) lb when x— - .

ss

In the following expansions find the value of the greatest term :

2
5. (1 + x) n when x= -

, n = 6.
o

6. (« + #)* when a=s ,
.r= -, ??=9.

10—2
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7. Shew that the coefficient of the middle term of (l + x)2n is

equal to the sum of the coefficients of the two middle terms of

(1+tf)2"- 1
.

8. If A be the sum of the odd terms and B the sum of the

even terms in the expansion of (x+ a)n
,
prove that A 2 -B2= (x2 -a2

)

n
.

9. The 2nd, 3
rd

, 4
th terms in the expansion of (x+y)n are 240, 720,

1080 respectively ; find x, y, n.

10. Find the expansion of (1 + 2x - x2
)\

11. Find the expansion of (Zx2 -2ax+ 3a2
)
3

.

12. Find the rth term from the end in (x + a)n .

(]\ 2n + l

x--j

14. In the expansion of (1 + #)
43 the coefficients of the (2r + l)th and

the (r+ 2)
th terms are equal; find r.

15. Find the relation between r and n in order that the coefficients

of the 3rth and (r+ 2)
th terms of (l+x)2n may be equal.

16. Shew that the middle term in the expansion of (1 +x)2n is

1 .3.5...(2n-l)
sn^

hi

If c , Cj, c2 , ... <?n denote the coefficients in the expansion of (1 +x)n,

prove that

17. ^+ 2^+ 303 + +ncn=n.2n
- 1

.

c, c, cn 2n + 1 -l
- 4- - 4- . . H — =

.

2 3 n+l n+\18. c +i + o
2 4- +

io c.2c2
3c8 ncn n{n+\ )

iy. —i
1 r + ~ — O

c c
x

C2 cn _ x
A

v , N , . c,c, cn (n+l)H

20. (co+ej (Cl + c2) (cn . 1 + cn) = -1-2

^
'-

M a 22
c, 23c2 24c, 2n + 1cn

3'1 + 1 -1
21. 2c +—i+ 2 +—?+ +—-p^ -=-..

2 3 4 n+ l n + l

|2w

22. c
(f+c1

+c2 + + c« =
i

7i ]^ •

\2n
23. c cr+ CjCr + j + c

2
cr + 2+ +cn _ rcn= -- =~~

.



CHAPTER XIV.

Binomial Theorem. Any Index.

177. In the last chapter we investigated the Binomial
Theorem when the index was any positive integer; we shall now
consider whether the formula? there obtained hold in the case

of negative and fractional values of the index.

Since, by Art. 167, every binomial may be reduced to one
common type, it will be sufficient to confine our attention to

binomials of the form (1 +x)
n

.

By actual evolution, we have

(1 + xf = V 1 + X = 1 + ^ X - - X2 + yr. x3 -
;

and by actual division,

(1 - x)~
2 = 7^ -

x
-
a = 1 + 2x + 3x* + ix3 + :

[Compare Ex. 1, Art. CO.]

and in each of these series the number of terms is unlimited.

In these cases we have by independent processes obtained an
i

expansion for each of the expressions (1 + x)
2 and (1 + x)~~. We

shall presently prove that they are only particular cases of the

general formula for the expansion of (1 + x)
n
, where it is any

rational quantity.

This formula was discovered by Newton.

178. Suppose we have two expressions arranged in ascending
powers of x, such as

,
m (m - 1 ) „ m (m - 1 ) (m - 2) ,

I + mx+ v 'x-+ -
x /x 'a?+ (I ).

and l+n.v + -

l

g
>x-+-±

]

J
K- a? + (2).
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The product of these two expressions will be a series in as-

cending powers of x\ denote it by

1+ Ax +Bx2 + Cx3 + Dx4 + ;

then it is clear that A, B, C, are functions of m and n,

and therefore the actual values of A, B, C, in any particular

case will depend upon the values of m and n in that case. But
the way in which the coefficients of the powers of a; in (1) and (2)

combine to give A, B, C, is quite independent of m and n
;

in other words, whatever values in and n may have, A, B, C,

preserve the same invariable form. If therefore we can determine

the form of A, B, C, for any value of m and n, we conclude

that A, B, C, will have the same form for all values of m
and n.

The principle here explained is often referred to as an example
of "the permanence of equivalent forms ;

" in the present case we
have only to recognise the fact that in any algebraical product the

form of the result will be the same whether the quantities in-

volved are whole numbers, or fractions ;
positive, or negative.

We shall make use of this principle in the general proof of

the Binomial Theorem for any index. The proof which Ave

give is due to Euler.

179. To prove the Binomial Theorem ivhen the index is a

positivefraction.

Wliatever be the value of m, positive or negative, integral or

fractional, let the symbol f(m) stand for the series

, m (m - 1) „ m (m-Y) (m — 2) s
1 + mx +—y—^

—

-x- +—v ' v
'

x

3 + ...

;

then.y(n) will stand for the series

- n(n — l)„ n(n — l)(n — 2) „

1 + nx + \ ' x2 + v ' v
'-

x

3 + ....

If we multiply these two series together the product will be
another series in ascending powers of x, whose coefficients loill be

unaltered inform whatever m and n may be.

To determine this invariable form of the product we may give

to m and n any values that are most convenient ; for this purpose
suppose that m and n are positive integers. In this casey(m)
is the expanded form of (1 + x)

m
, andy*(?i) is the expanded form of

(1 +x)
n

; and therefore
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f(m) xf(n) - (1 + x)
m

x (1 + a?)" = (1 + x)
m+

\

but when m and n are positive integers the expansion of (1 + x)"
, + "

-, / v (m + n) (m + n - 1 ) .

I . —

This then is the form of the product of f(m) x/(><) in o#
cases, whatever tlie values of m and n may be; and in agreement
with our previous notation it may be denoted hyf(m + n) ; there-
forefor all values ofm and n

/(m) xf(n)=f(m + n).

Also /(w) x/(n) x/(^) =/(w + ») x/( p)

=f(m + n +p), similarly.

Proceeding in tliis way we may shew that

f(m) xf(n) x/(j;)...to k factors =/(»» + n +p +...to k terms).

Let each of these quantities m, ?i, j), be equal to =
,

rC

where h and k are positive integers
;

but since h is a positive integer,f(h) = (1 + x)
h

;

but y*
( y ) stands for the series

, h k\k J 2

,, vi , h k \k J ,

.*. ( 1 + a;) = 1 + T x + x /
x- + ,

« 1.2

which proves the Binomial Theorem for any positive fractional

index.
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180. To prove the Binomial Theorem when the index is any
negative quantity.

It has been proved that

f(m) x/(w) =/(w* + n)

for all values of m and n. Replacing in by — n (wliere n is

positive), we have

f(-n) •xf(n)=f(-n + 7i)

=/(0)

=%

since all terms of the series except the first vanish

;

•'•

/hr/(
- n)

'

but/(w) = (l + x)'\ for any positive value of n;

or (1 + *)"" =/(-*)•

But f(—n) stands for the series

1 + (- n) x + ^
'-f—,

= ar +
;

1 . L

... (1 + «.)- = 1 + (_ W) a. + (rg) <" " " *> g» +
;

which proves the Binomial Theorem for any negative index.

Hence the theorem is completely established.

181. The proof contained in the two preceding articles may
not appear wholly satisfactory, and will probably present some dif-

ficulties to the student. There is only one point to which we
shall now refer.

In the expression iovf(in) the number of terms is finite when
vi is a positive integer, and unlimited in all other cases. See

Art. 182. It is therefore necessary to enquire in what sense we
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are to regard the statement thaty(m) x/(n) =f(m + n). It a\ ill

be seen in Chapter xxi., that when x< 1, each of the series/^/),

/(n)i/(m + n) *s convergent, and/(m + «) is the true arithmetical
equivalent of f(m) *f(n). But when sol, all these series are
divergent, and we can only assert that if we multiply the series

denoted by/(m) by the series denoted by f(u), the first r terms
of the product will agree with the first r terms of f(m + n),

whatever finite value r may have. [8ee Art. 308.]

3

Example 1. Expand (1 - xf2 to four terms.

3 Id- 1

), ,.J(H(S-)

Example 2. Expand (2 + 3a;)
-4 to four terms.

(2 + 3z)-4= 2-<(l + ^)~
4

182. In finding the general term we must now. use the
formula

m(w-1)(w-2) (n-r + l)
rx

written in full ; for the symbol "C
r
can no longer be employed

when n is fractional or negative.

Also the coefficient of the general term can never vanish unless

one of the factors of its numerator is zero; the series will there-

fore stop at the rth term, when n — r + 1 is zero ; that is, when
r=oi+ l ; but since r is a positive integer this equality can never

hold except when the index n is positive and integral. Thus the

expansion by the Binomial Theorem extends to w+1 terms when
n is a positive integer, and to an infinite number of terms in all

other cases.
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1

Example 1. Find the general term in the expansion of (1 +x)'\

The (r+l)th term- —- L±
r

-5) (-2r + 3)

2r lr
af.

The number of factors in the numerator is r, and r - 1 of these are nega-

tive ; therefore, by taking -- 1 out of each of these negative factors, we may
write the above expression

(-i)~
1 - 8 - 6-<»-V

i

Example 2. Find the general term in the expansion of (l-nx) n
.

The (r+ 1)'- term = » V " A" / M £ ( - «»)r

E /

= !(!-«) (l-ar.) (1-F^Un) _ ^
wr I r

l(l-n)(l-2n) (1-r-l.n) ^

=
(
_ i)r

(
_ i)r-i

(n-l)(2n-l) (r-l.n-1)^

(n - 1) (2« - 1) .

.

....(^l.n-l)

since (_1)»- (_ l)r-i = (_ i)2r-i= _ 1#

Example 3. Find the general term in the expansion of (1 - x)~3.

The(r+ irterm=<-
3'(- 4>'-_5)^-(- 3 -'-+ 1

)

(
-,)r

r

= (1)r 3.4.5 (r+ 2) (1)ffa,

~
[ } 1.2.3 r

X

_ (r+l)(r+2) .
~ 1.2

*»

by removing like factors from the numerator and denominator.
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EXAMPLES. XIV. a.

Expand to 4 terms the following expressions:

s

1

1. (l+xf.
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and, if not, under what conditions the expansion of (1 + x)
n may

be used as its true equivalent.

Suppose, for instance, that n — — l; then we have

(1 -x)~
r = 1 + x + x2 + x3 + x* + (1);

in this equation put x = 2 ; we then obtain

(-l)~ 1 =l+2 + 2
2 + 2 3 + 2

4 +

This contradictory result is sufficient to shew that we cannot

take

, n(n-l)l+nx+—
\
—~—

' x2 +

as the true arithmetical equivalent of (1 + x)
n
in all cases.

Now from the formula for the sum of a geometrical pro-

gression, we know that the sum of the first r terms of the

1 - xr

series (1) = -z
v '

I —x
1 xr

1 - X 1 - x y

and, when x is numerically less than 1, by taking r sufficiently

xr

large we can make ^ as small as we please ; that is, by taking

a sufficient number of terms the sum can be made to differ as

little as we please from ^ . But when x is numerically

xr

greater than 1, the value of ^ r increases with r. and therefore
1 - x

no such approximation to the value of is obtained by taking
JL vC

any number of terms of the series

1 + X + Xs + X3
4-

It will be seen in the chapter on Convergency and Diver-

gency of Series that the expansion by the Binomial Theorem
of (1+x)" in ascending powers of a? is always arithmetically in-

telligible when x is less than 1.

But if x is greater than 1, then since the general term of

the series

,
n(n-\) „

1 + nx H
.j

x" +
I . -
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contains x r

, it can be made greater than any Unite quantity by
taking r sufficiently large ; in which case there is no limit to the
value of the above series; and therefore the expansion of (1 + x)

n

as an infinite series in ascending powers of x has no meaning
arithmetically intelligible when x is greater than 1.

184. We may remark that we can always expand (x + y)"

by the Binomial Theorem ; for we may write the expression in

either of the two following forms :

x" ('*!)' '(•ff.
and we obtain the expansion from the first or second of these
according as x is greater or less than y.

185. To find in its simplest form the general term in the

expansion of (1 — x)-u .

The (r + l)
th term

(- n)(-n- I) (-71- 2)... (-n-r+1)
(-*y

= (- iy
»(*+1Hw + 2) -(** + »•-

1)

= (_ I)*
ttv*+l)(tt+2)...ytt + r-l ) xr

n (n + 1) (n + 2) ... (n + r - 1) r

From this it appears that every term in the expansion of

(1 -x)~* is positive.

Although the general term in the expansion of any binomial

may always be found as explained in Art. 182, it will be found
more expeditious in practice to use the above form of the general

term in all cases where the index is negative, retaining the

form

n(n- l)(n-2) ... (n - r + 1
) ,

i

x

t
only in the case of positive indices.
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Example. Find the general term in the expansion of - _ . .

1 -1
-—-

—

= (l-3x) 3
.

The (r + l) th term

1.4.7 (3r-2) 3rrr

1.4.7 (Sr-2) ^
^H : w •

r

_i

If the given expression had been (1 + Sx) 3 we should have used the same

formula for the general term, replacing Sx by - 3x.

186. The following expansions should be remembered :

(1 - x)'
1 = 1 + x + x2 + x3 + + xr +

(1 - x)~
2 = 1 + 2x + 3x2 + ±x3 + + (r + 1) x

r +

(I - x)~
3 =1 + 3x + 6x* + 10x3 + + (

r+ l

J%—Kr +

expansion of (1 + x)
n

, when n is unrestricted in value, will be

found in Art. 189 ; but the student will have no difficulty in

applying to any numerical example the method explained in

Art. 172.

Example. Find the greatest term in the expansion of (l+a;)~n when
2

x= - , and n— 20.
3

fi j_ <t' ^
We have ^V+i— ,xxTr , numerically,

- 19+r ? r •

•"• 'r+l> -'r»

2 (19 + r)
so long as —£ > 1

;

that is, 38 >r.

Hence for all values of r up to 37, we have jrr+1>Tr ; but if r=38, then

I^k= T,. , and these are the greatest terms. Thus the 38th and 39th terms
are equal numerically and greater than any other term.



BINOMIAL THEOREM. ANY INDEX. 159

188. Some useful applications of the Binomial Theorem are
explained in the following examples.

Example 1. Find the first three terms in the expansion of

i _i

(l + 3*)
r
-(l-2x) 3.

Expanding the two binomials as far as the term containing x'\ we have

, /3 2\ /8 3 2

1
13 55 .

= 1 + -Q X +
72

X"'

If in this Example ^='002, so that ar= -000004, we see that the third
term is a decimal fraction beginning with 5 ciphers. If therefore we were
required to find the numerical value of the given expression correct to 5 places

of decimals it would be sufficient to substitute *002 for x in 1 + - x, neglect-
o

ing the term involving x2
.

Example 2. When x is so small that its square and higher powers may
be neglected, find the value of

J(± + xJ*

Since x- and the higher powers may be neglected, it will be sufficient to

retain the first two terms in the expansion of each binomial. Therefore
i

the expression

_tl±±±l
b(i+|.)

-K-S-).
the term involving x- being neglected.
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Example 3. Find the value of -rj= to four places of decimals.
x/47

_i

1 -- -- 1 / 2 \ 2

-^= (47) *=(7*-2)*=-(l-n)

1/ 1 3 ^ 5 :L_

-7^ + 72 + 3 -74 + 2 -7G+--

-7 + 73 + 2 * 75
+

2 *77+ ""

To obtain the values of the several terms we proceed as follows

:

1)1
!

7 ) -142857 =t,
7 ) -020408

'

7 ) -002915 = 7-3,

7 ) -000416

•000059 =^;

5 1
and we can see that the term - . = is a decimal fraction beginning with

5 ciphers.

.-. -i- = -142857 + -002915 + -000088
\/47

= •14586,

and this result is correct to at least four places of decimals.

Example 4. Find the cube root of 126 to 5 places of decimals.

!

(126)3= (5
3 + l) a

5

1

/
t

1 1 M 5 1 \~ 5
V 3"5 :J 9'5« + 81*59 '")

1 1_ 1
J.

_1 1
~ 3 ' 52 ~ 9 ' 55 + 81 *57 •"

1^1^ 1 W_
~ +

3*"l02 9'105
+

81 *107
"••

_ -04 -00032 -0000128
= 5-1 h —^ 3 9 81

=5-f -013333 ... - -000035 ...+...

= 5 '01329, to five places of decimals.
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EXAMPLES. XIV. b.

Find the (r+1)" 1 term in each of the following expansions :

-I i

!• (l+#) 2
. 2. (l-.t-)

-5
. 3. (l+3.e) :]

.

J 3

4. (l+#) 3
. 5. (l+.r2)-3. 6 . (i-2.v)~*.

7. (a+fo?)" 1
. 8. (2-.r)~ 2

. 9. tt{rf-x*)\

10
- 7=A=. 11. 3/

*

12. ,

*

</T+2* N
f/

(l-3.^ V&Z^
Find the greatest term in each of the following expansions :

4
13. ( 1 + .v)

~

7 when x=— .

lo

— 2
14. ( 1 + a?)

2 when a?= 5

.

-
1-1 1

15. (1 — 74?)
4 wheu#= -.

o

16. (2a?+ 5J/)
12 when a?= 8 and y= 3.

17. (5 - 4.v)
~ 7 when tv=-

.

25

18. (3-r2+ 4/) - n when x= 9, y= 2, «= 1 5.

Find to five places of decimals the value of

19. v98. 20. 4/998. 21. \
3/
1003. 22. \

4/

2400.

1

1 3

23. ^=. 24. (1^)3. 25. (630) *. 26. tfilla

If x be so small that its square and higher powers may be neglected,

find the value of

1 3

27. (l-7tf)s(l + 2a?)"*.
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31. V^+C+jj '

32 .

^T^-^1^

(1+5*)*+ (4+|Y

33. Prove that the coefficient of sf in the expansion of (l-4r) *

is
v2

'

31 Prove that (1 +*)*=2- |l-—^ +-^ (f^) f
35. Find the first three terms in the expansion of

1

(1 + x) 2 Vl + 4x
'

36. Find the first three terms in the expansion of

3

(! + #)* + *Jl + bx

37. Shew that the nth coefficient in the expansion of (1 - x)~n is

double of the (n-l)th
.

189. To find the numerically greatest term in the expansion

of (1 + x)n
,
for any rational value of\\.

Since we are only concerned with the numerical value of the

greatest term, we shall consider x throughout as positive.

Case I. Let n be a positive integer.

The (r+l)th term is obtained by multiplying the rth term

by . x ; that is, by f 1
J
x ; and therefore the

terms continue to increase so long as

'n+ 1

Or
1 - 1)- 1 '

., (n+ l)x
,that is. — > 1 + x,

r

(n + 1 ) x
or *— — >r.

1+02



BINOMIAL THEOREM. ANY INDEX. 103

(ll 4- 1 ^ X
If — — be an integer, denote it by p; then if r=p, the

multiplying factor is 1, and the (;>+l) th term is equal to the
^>

th
, and these are greater than any other term.

( 71 4- 1 ) X
If —, — be not an integer, denote its integral part by q ;

then the greatest value of r is 7, and the (q + l) th term is the
greatest.

Case II. Let n be a positive fraction.

As before, the (r+ l)
th term is obtained by multiplying the

_. , (n + 1
t
\

rm term by (
— I )x.

(1) If x be greater than unity, by increasing r the above
multiplier can be made as near as we please to - x ; so that after

a certain term each term is nearly x times the preceding term
numerically, and thus the terms increase continually, and there

is no greatest term.

(2) If x be less than unity we see that the multiplying

factor continues positive, and decreases until r > n + 1 , and from
this point it becomes negative but always remains less than 1

numerically ; therefore there will be a greatest term.

As before, the multiplying factor will be greater than 1

(n + l)x
so Ions: as -^ — > r.

1 +x
( Jl 4- 1 \ X

If ^ -— be an integer, denote it by p ; then, as in Case I.,

the (p + l) th term is equal to the £>
th

, and these are greater than

any other term.

( 7t 4" 1 ) X
If ^p • be not an integer, let q be its integral part; then

the (q 4- l)th term is the greatest.

Case III. Let n be negative.

Let n - — in, so that m is positive ; then the numerical
nil _L f J

value of the multiplying factor is — . x ; that is

(

m-l \
+ 1 ) x.

r J

11—2
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(1) If x be greater than unity we may shew, as in Case II.,

that there is no greatest term.

(2) If x be less than unity, the multiplying factor will be

greater than 1, so long as

(m - 1 ) x
that is, — > 1 - x,

r

(m—\)x
or -.

—— > r.
I -x

lyn. 1 ) CC

If ^— — be a positive integer, denote it by p \ tlien the
x — x

(p + l)th term is equal to the p
th term, and these are greater than

any other term.

(fjr 1 ) £C

If * '— be positive but not an integer, let q be its inte-
1 -x

gral part ; then the (q + l)th term is the greatest.

If i '-— be negative, tlien m is less than unity ; and by

writing the multiplying factor in the form (1 —
J
x, we

see that it is always less than 1 : hence each term is less than

the preceding, and consequently the first term is the greatest.

190. To find the number of homogeneous products of v dimen-

sions that can beformed out of the n letters a, b, c, and their

powers.

By division, or by the Binomial Theorem, we have

= = 1 + ax + a2x2 + a3x3 + ,

1 — ax

1

1 — bx

1

1 — ex

= 1 + bx + b
2x2 + b

3x3 + ,

= 1 + ex + c
2x2 + c

3x3 + ,
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Hence, by multiplication,

1 1 1

1 _ ax 1 — bx 1 — ex

= (1 + ax + aV + ...) (1 + bx + b*x* + ...) (1 + ex + c°x
2 + ...) ...

= 1 + x (a + b + c + ...) +x2
(a

2 + ab + ac + b'
2 + bc±c 2

4- . .

.

) + ...

= 1 + S
t
x + Sjfx? + Sa

xa + suppose

;

where S
lt

>S'.,, SaJ
are the sums of the homogeneous pro-

duets of one, two, three, dimensions that can be formed of

a, b, c, and their powers.

To obtain the number of these products, put a, b, c, each
equal to 1 ; each term in JS

l9
S

2 , S
:i ,

now becomes 1, and the
values of Sl9

S
2 , S

:i ,
so obtained give the number of the

homogeneous products of one, two, three, dimensions.

Also
1 1 1

1 — ax 1 — bx 1 — ex

becomes — or (1 — a;)
".

(1 - x)

Hence S
r
= coefficient of xr

in the expansion of (1 — x)~

n(n+ l)(n + 2) (n+r- 1)~
jr

n + r—1

\r \n— 1

191. To find the number of terms in the expansion of any

multinomial when the index is a positive integer.

In the expansion of

(a
t
+ a

B
+ a

B
+ +a

r
)",

every term is of n dimensions; therefore the number of terms is

the same as the number of homogeneous products of n dimensions

that can be formed out of the r quantities a,, a , ... a
r ,
and their

powers ; and therefore by the preceding article is equal to

I?' + n — 1

n r — 1
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192. From the result of Art. 190 we may deduce a theorem

relating to the number of combinations of n things.

Consider n letters a, b, c, d, ; then if we were to write

down all the homogeneous products of r dimensions which can be

formed of these letters and their powers, every such product

would represent one of the combinations, r at a time, of the n
letters, when any one of the letters might occur once, twice,

thrice, ... up to r times.

Therefore the number of combinations of n things r at a time

when repetitions are allowed is equal to the number of homo-

geneous products of r dimensions which can be formed out of n
\n + r — 1

letters, and therefore equal to , - , or
n+r

*C .

\r n—\ T

That is, the number of combinations of it things r at a time

when repetitions are allowed is equal to the number of com-
binations of n + r— 1 things r at a time when repetitions are

excluded.

193. We shall conclude this chapter with a few miscel-

laneous examples.

(1 - 2a;) 2

Example 1. Find the coefficient of xr in the expansion of ~
.

The expression = (1 - Ax + 4.x
2
) (1 +PyC +p^xr + ... +prx

r+ ...) suppose.

The coefficient of xr will be obtained by multiplying pr , p r-x , pr-» by 1,

-4,4 respectively, and adding the results ; hence

the required coefficient =p r
- 4pr_ x

+ 4pr_2 .

But pr=(- iy fe±afc±9
. [Ex . 3 , Art. 182.]

Hence the required coefficient

=
(
.

1)
r
(r+lHr + 2) _ 4( _ 1)r. 1rJ^ + 4( _ ira (I^r

= ^-[(r + l)(r+ 2) + 4r(r + l)+4r(r-l)]

f-l) r
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Example 2. Find the value of the scries

„ , 5 5.7 5.7.!)
2 4- . -4-

|_2. 3
T

|3.32 ^
1
4 . 3 :J

+ •••

mU . 3 . 5 1 3.5.7 1 3.5.7.9 1The expression = 2 + —— . — + . — + :—- . _ +v
[2 3-

1

3

3 ;! 14 3 4

3 5 3 5 7 3 5 7 1)

- Q 2Ll? 2~ 2 ' 2 ' 2 2J 2 ' 2 ' 2 ' 2 24

|2 '3?*"1 ~|3~ '3:i+ ]i~ *35+ ••'

3 3 5 3 5 7

2 2 2' 2 /2\- 2*2*2
1
*3 +

"~J2~

z z 2 2 /2\ a 2 2 2 /2V

o-.r-ffl"
1

= 35=V3 -

Example 3. If ?t is any positive integer, shew that the integral part of

(3 + Jl)n is an odd number.

Suppose I to denote the integral and/ the fractional part of (3 + a/7)'
1
.

Then I+f=3n+C
1
S"- i

s/7 + a2 S
n~2

. 7+(783*-«^7)8+ (1).

Now 3- N/7 is positive and less than 1, therefore (S-^)'1 is a proper
fraction; denote it by/';

.•./'= 3n -C,

1
3'l-V7 + C'2

3'l
-2 .7+C3

3'l-3(
v/7)

3 + (2).

Add together (1) and (2) ; the irrational terms disappear, and we have

I+f+f = 2 (3» + C2
3'1

"2
. 7 + . . .

)

= an even integer.

But since/ and/' are proper fractions their sum must be 1

;

:\ I=an odd integer.

EXAMPLES. XIV. c.

Find the coeflicient of

1. xm in the expansion of

2. an in the expansion of

3. «* in the expansion of
X "T" X

(1 - xf
'

4 + 2a - a2
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2 4- x+X2

4. Find the coefficient of xn in the expansion of
( 1 + ^J

5. Prove that

1 1 1.3 1 1.3.5 2_ 1-3.5.7 1^

2 * 2
+ 271 ' 2* 2.4.6'23

+ 2.4.6.8'2*

6. Prove that

3 3^5 3.5.7
4

H '

4. 8
H ~ 4.8.12

7. Prove that

V 3'

N/8 = 1 + - + t^~; + , \ \ n +

2n 2n(2n+ 2) 2n(2n+ 2) (2n+ 4)
+ ~3

+ ~ 3.6 "
+

3.6.9
+

~ 2
V
+

3
+ _

3T6~
+

3.6.9
+

J

8. Prove that

7- h + ?i + ^ (^-1)
.
n{n-\)(n-2) 1

'

J 7
+

7.14
+

7.14.21
+

J

±n Ji .
%

j.
»(*+!) , n(»+ l)(n+ 2) \(2 2.4

+ " 2.4.6
+

J

•

9. Prove that approximately, when x is very small,

"7! 9 \ 2 256' '

2
(
1+r6'V

10. Shew that the integral part of (5 + 2 >JQ)
n is odd, if n be a

positive integer.

11. Shew that the integral part of (8 + 3 V/7)
H is odd, if n be a

positive integer.

12. Find the coefficient of xn in the expansion of

(l-2.v+ 3.v2 -4.v3 + )-*.

/ 1\ 4 '1

13. Shew that the middle term of ( x + - 1 is equal to the coefficient

of xn in the expansion of (1 -Ax) ^" 2
.

14. Prove that the expansion of (1 — x^)n may be put into the form

(1 - xfn+ 3nx (1 - xfn ~ 2+ 3n @n - 3) xi (i _ xyn - 4+
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15. Prove that the coefficient of at* ill the expansion —
, is

1,0, - 1 according as n is of the form 3m, 3m - 1, or 3//<.+ 1.

16. In the expansion of (a + b + c)s find (1) the number of terms,

(2) the sum of the coefficients of the terms.

17. Prove that if n be an even integer,111 1 2"" 1

l\n-l \'S

\

n -

3

\b\n-5
\

u-\ ,1 |rc '

18. If c , (',, C2 , fn are the coefficients in the expansion of

(1 +.f) u
,
when n is a positive integer, prove that

I//-1

a) c -cl+ c2 -c3+ +(-mv-(-i)'-
1/

,

|

;^r_
1

.

(2) ^-2^+3^-4^+ + (_i)n (/i4. 1)t .

M= 0>

(3) c*- c *+c£-c*+ + (-l)»cn
2=0, or (-1)^,

according as n is odd or even.

19. If *„ denote the sum of the first n natural numbers, prove that

(1) (l-;r)- 3= ^ + %^+ ^.^+ +V»~ 1 +...

j2^+ 4
(2) 2 (*! *,B+ 82*2, _j + + 8n8n + l )

= -——^ .

„ T . 1.3.5.7 (2)i-l)
20. If fr- 2 .4. 6 , 8 2n . P*>™ that

(!) ?2n + l + <Mj»+ Man - 1 + + 2n- \<ln + 2+ ?«?• +1= 5-

(2) 2 {?2n - ?1y, (l
_ j + g^a.

_

2+ + (
- 1)"

- 1
tj n _ #„ + J

21. Find the sum of the products, two at a time, of the coefficients

in the expansion of (1 +x)n, when n is a positive integer.

22. If (7 +4 v/3)
n=p + /3, where n and p are positive integers, and |9

a proper fraction, shew that (1 -f3)(p + p) = l.

23. If c , <?!, c^, rn are the coefficients in the expansion of

(1 +#)*, where ?i is a positive integer, shew that

c2 .

c
\

(-I)n_1fn ,11 1

2 3 n 2 3 n



CHAPTER XV.

Multinomial Theorem.

194. We have already seen in Art. 175, how we may
apply the Binomial Theorem to obtain the expansion of a multi-

nomial expression. In the present chapter our object is not

so much to obtain the complete expansion of a multinomial as

to find the coefficient of any assigned term.

Example. Find the coefficient of a4b"c3d5 in the expansion of

(a + b + c + d)u .

The expansion is the product of 14 factors each equal to a+b + c + d, and
every term in the expansion is of 14 dimensions, being a product formed by

taking one letter out of each of these factors. Thus to form the term a4b2c*d5,

we take a out of any four of the fourteen factors, b out of any hco of the re-

maining ten, c out of any three of the remaining eight. But the number of

ways in which this can be done is clearly equal to the number of ways of ar-

ranging 14 letters when four of them must be a, two 6, three c, and five d ;

that is, equal to
114

A TTralg . [Art. 151.]
412 3 5

L J

This is therefore the number of times in which the term a4b2c*d5 appears

in the final product, and consequently the coefficient required is 2522520.

195. To find the coefficient of any assigned term in the ex-

pansion of (a + b + c + cl + . ..)
p

, where p is a positive integer.

The expansion is the product of p factors each equal to

a + ft + c + cZ + ..., and every term in the expansion is formed by

taking one letter out of each of these p factors ; and therefore

the number of ways in which any term aab^cyd8 ... will appear

in the final product is equal to the number of ways of arranging

p letters when a of them must be a, (3 must be b, y must be c;

and so on. That is,

\p
the coefficient of aabPcyds ... is =

—

~f~^—

,

o p \y 6 ...

where a + j3 + y + S + ... =p.
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Cok. Jn the expansion of

(a + bx + cx~ + da? + ... )'',

the term involving a"b&cyd6
... is

^L-.a-^^v^).

or i—T5-Ht^t- aWcyd5
... xfi+2y+M + ..

where a + /3 + y + $ + ... = p.

This may be eallecl tlte general term of the expansion.

Example. Find the coefficient of «* in the expansion of (a + i.c + ex2
)-'.

The general term of the expansion is

-ii-«a^V +2
? (i),

where a + p + y = \).

We have to obtain by trial all the positive integral values of /3 and 7
which satisfy the equation fi + 2y = 5; the values of a can then be found from
the equation a + /3 + 7 = 9.

Putting 7= 2, we have /3 = 1, and a= G;

putting 7= 1, we have /3 = 3, and a = 5;

putting 7 = 0, we have /3 = 5, and a = 4.

The required coefficient will be the sum of the corresponding values of the

expression (1).

Therefore the coefficient required

|9 19 19

= 252a66c2 + 5Q4a*&c + 12Ga4b\

19G. To find the general term in the expansion of

(a + bx + ex2 + clx
3 + . . .)

n
,

vjhere n is any rational quantity.

By the Binomial Theorem, the general term is

n(n-l)(n-2)...(n-p + l)
(

,,_ v + rf +^ +

where jp is a positive integer
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And, by Art. 195, the general term of the expansion of

(6a; + ex' + dx3 + ...)''

\P

\pjy_\o_—

where
ft, y, 8 . . . are positive integers whose sum is p.

Hence the general term in the expansion of the given ex-
pression is

where /? + y + S + ... = /?.

197. Since (a + bx + ex
2 + dx3 + ..)" may be written in the

form

„A 6 c 2
a* 3 yail +-x + -x+-ar+ ... ,

\ a a a J

it will be sufficient to consider the case in which the hrst term
of the multinomial is unity.

Thus the general term of

(1 + bx + ex
2 + dx3 + . . .)"

n
is - (n-l)(n-2). (n-p + l)

bpcyd8 ^+9f+u+
\p \v

\

8

where
fi + y + &-\-...=p.

Example. Find the coefficient of x3 in the expansion of

(l-3z-2.r2 + 6x'3)3.

The general term is

S(S-0(t-»)...(|-*+oV
,., ,, iO-sA-^e)8/-^^

(i).

We have to obtain by trial all the positive integral values of /3, 7, 5 which
satisfy the equation j3 + Zy + 35= 3 ; and then p is found from the equation

2>=/3 + 7 + 5. The required coefficient will be the sum of the corresponding
values of the expression (1).
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In finding /3, 7, 5, ... it will be best to commence by giving to 5 successive
integral values beginning with the greatest admissible. In the present case
the values are found to be

8=1, 7 = 0, 18= 0, p=l;

5 = 0, 7 =1, 0=1, p=2;

5= 0, 7 = 0, 0=3, p = 3.

Substituting these values in (1) the required coefficient

^)<^)(->)<- 3"- 2>+^#^ (-3) s

4_4_4
3 3~3

198. Sometimes it is more expeditious to use the Binomial
Theorem.

Example. Find the coefficient of x4 in the expansion of (1 - 2x + 3.r
2
)

-3
.

The required coefficient is found by picking out the coefficient of xx from

the first few terms of the expansion of (1 - 2x - Sx2
)

-
* by the Binomial

Theorem ; that is, from

1 + 3 {2x - Sx2
) + 6 (2.r - 3x2

)

2 + 10 {2x - 3.r-) :J + 15 (2.r - 3.r
2
)

4
;

we stop at this term for all the other terms involve powers of x higher
than x*.

The required coefficient= 6 . 9 + 10 . 3 (2)
2

( - 3) + 15 (2)
4

= -66.

EXAMPLES. XV.

Find the coefficient of

1. a 2Pc4d in the expansion of (a-b— c+d)w.

2. a2b ryd in the expansion of (a + b — c — d)s
.

3. a?bsc in the expansion of (2a + 6-f 3c)r
.

4. x~yhA in the expansion of {cub - by + cz)9.

5. x3 in the expansion of (l+3# — 2a2)
3

.

6. xA in the expansion of (l + 2.r+ 3.r2
)
10

.

7. .'•" in tlie expansion of (1 + 2.v - x2)'\

8. A"
8 in the expansion (if (1 - 2.r+ 3#2 - 4.r'

!

)
4

.
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Find the coefficient of

9. .r
23 in the expansion of (1 - 2x+ 3x2 - x4 - .i/')

5
.

i

10. x5 in the expansion of (1 -2x+ 3x2
)

2
.

i

11. x3 in the expansion of (1 - 2x+ 3x2 - 4a3
)
2

.

( X2 X*\
~ 2

12. x8 in the expansion of ( 1 - — + '-»

)
.

13. x* in the expansion of (2 - 4x+ 3x2
)

~ 2
.

3

14. Xs in the expansion of ( 1 + Ax2+ 1Ox4+ 20^G)
" *

.

15. x12 in the expansion of (3 - 15x*+ 18^')
- l

.

i

16. Expand (1 - 2x - 2x2)* as far as x2
.

2

17. Expand (1 + 3x2 - 6x*) 3 as far as x5.

4

18. Expand (8 - 9^ + 1 8a4
)
3" as far as x8

.

19. If (l+x+ x2+ +xP)n= a + a
l
x+ a.^v2 + a

llf>
xnr>,

prove that

(1) a +a1
+aa+ +a^=(p+l)n.

(2) a1+2a2+3a8+ +«p.a«p=5»i>(p+l)*.

20. If a , a15 a2 >
ft3 ••• are the coefficients in order of the expansion

of (1 +x+x2
)
n

,
prove that

a 2 -a 2 + a 2 -a 2+ + (-l)n- 1aU 1
=^an {l-(-l)^an}.

21. If the expansion of (1 +x+ x2
)
n

be a + a
l
x+a2x

2+ ... +araf
r + ... +a2nx

2n
,

shew that

«o+ a
3+ a

6 + ... =a
l+ a4+ a-+ ... =«2+ a6

+a
8+ ... = 3n_1.



CHAPTER XVI.

Logarithms.

199. Definition. The logarithm of any number to a given
base is the index of the power to which the base must be raised

in order to equal the given number. Thus if ax = JV, x is called

the logarithm of N to the base a.

Examples. (1) Since 34= 81, the logarithm of 81 to base 3 is 4.

(2) Since lO^lO, 102= 100, 103= 1000,

the natural numbers 1, 2, 3,... are respectively the logarithms of 10, 100,

1000, to base 10.

200. The logarithm of iV to base a is usually written loga jy,

so that the same meaning is expressed by the two equations

ax = N; x = \oga
N.

From these equations we deduce

an identity which is sometimes useful.

Example. Find the logarithm of 32 £/! to base 2 N/2.

Let x be the required logarithm; then,

by definition, (2 x/2)«= 32 4/4

;

1 2

.-. (2. 2*)*= 2s
. 2*

;

3 2

.-. 2^= 2
5^;

3 27
hence, by equating the indices, - x= -

r ;

.'. x =— = 3-6.
o
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201. When it is understood that a particular system of

logarithms is in use, the suffix denoting the base is omitted.

Thus in arithmetical calculations in which 10 is the base, we
usually write log 2, log 3, instead of log

10
2, log

l0 3,

Any number might be taken as the base of logarithms, and
corresponding to any such base a system of logarithms of all

numbers could be found. But before discussing the logarithmic

systems commonly used, we shall prove some general propositions

which are true for all logarithms independently of any particular

base.

202. TJie logarithm of 1 is 0.

For a° = 1 for all values of a ; therefore log 1-0, whatever

the base may be.

203. The logarithm of the base itself is 1.

For a1 = a ; therefore log
a
a = 1

.

201. To find the logarithm of a product.

Let MN be the product; let a be the base of the system, and
suppose

a: = log. J/, y = \oga
J\T;

so that a* = M, a* = N.

Thus the product MN==ax
x ay

= ax+y
;

whence, by definition, log
a
MN = x + y

= 100^1/"+ low N.

Similarly, \oga
3INP = \oga

M+ logaiV+ logaP;

and so on for any number of factors.

Example. log 42 = log (2 x 3 x 7

)

= log2 + log3 + log7.

205. To find the logarithm of afraction.

M
Let -zz be the fraction, and suppose

x = \oga
M

i 2/ = log
a
iT;

so that ax =M
t

ay = N.



Thus the fraction

whence', by definition, log
a *—-=x — y

LOGARITHMS.
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ra3

Example 1. Express the logarithm of —^ m terms of log a, log b and

log c.

. Ja* a2

3

= log a2 - log (c^2
)

3= -log«-(logc5+ logfc2
)

3
= = log a - 5 log c - 2 log &.

Example 2. Find a; from the equation ax . c~2*=&3a!+1
.

Taking logarithms of both sides, we have

x log a - 2x log c = (Sx + 1) log 6
;

.-. x (log a - 2 log c - 3 log b) = log b
;

_ lo2 6

log a - 2 log c - 3 log b

'

EXAMPLES. XVI. a.

Find the logarithms of

1. 16 to base J2, and 1728 to base 2 v'3.

2. 125 to base 5 v/5, and *25 to base 4.

3. stt. to base 2 x/2, and '3 to base 9.
256

4. '0625 to base 2, and 1000 to base -01.

5. -0001 to base '001, and i to base 9^/3.

4
/~*r i

3 r~-^
6. kI gp , —j , */ a 2 to base a.

a?

7. Find the value of

l0g
8 128, l0g6^, log-frgj, log343

49 '

Express the following seven logarithms in terms of log a, logb, and
logo.

8. log(N^)fi
. 9. log{Va2 xybs

). 10. logflcFW).
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11. log^o^x^oJR). 12. log(^a V63-j-VP7a).

13. log 14. logj^J + f
ffi 3

15. Shew that log |f ' ; £^ = 1 logo - | log2 -
2
, log 3.

VW7J2 4 5 3

16. Simplify logV 72!) V 9" 1
.
27

"

3
.

75 5 39
17. Prove that log— - 2 log - + 1< >g— = h .g 2.

Solve the following equations:

18. o«=c&* 19. a2».63*=cs
.

90 °^ - & 21
-

a
'
2
* •
^

=

m6
lU

* &*-*
c"-

a3*.62»=m10
J

'

22. If \og(x'2y
3
)= a

}
and log-= 6, find log*- and log//.

23. If a3 " *
. V>x= ax + \ b3x, shew that x log (-") = log a.

24. Solve the equation

(a* - 2a*b* + b*)x
- 1= (a - ft)

2* (a+ 6) - -'.

Common Logarithms.

208. Logarithms to the base 10 are called Common Logar-

ithms; this system was first introduced, in 1615, by Briggs, a

contemporary of Napier the inventor of logarithms.

From the equation 10x - JV, it is evident that common logar-

ithms "will not in general be integral, and that they will not

always be positive.

For instance 3154 > 10
' and < 10 4

;

ion.

12—2
.*. log 3151«=3 + a fraction.
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Again, -06 > 10~ 2 and < 10 _l
;

.*. log *06 = - 2 + a fraction.

209. Definition. The integral part of a logarithm is called

the characteristic, and the decimal part is called the mantissa.

The characteristic of the logarithm of any number to the

base 10 can be written down by inspection, as we shall now shew.

210. To determine the characteristic of the logarithm of any

number greater than unity.

Since 10 1 - 10,

10
2 =100,

10
3 -1000,

it follows that a number with two digits in its integral part lies

between 10' and 10 2
; a number with three digits in its integral

part lies between 10 2 and 103
; and so on. Hence a number

with n digits in its integral part lies between 10" _I and 10".

Let N be a number whose integral part contains n digits;

then

J\T— in(tt-l)+ a fraction

.

.*. log iV= (n — 1) + a fraction.

Hence the characteristic is n — 1 \ that is, the characteristic of
the logarithm of a number greater than unity is less by one than

the number of digits in its integral part, and is positive.

211. To determine the characteristic of the logarithm of a
decimal fraction.

Since 10°= 1,

1(rs
=iJcr

01
'

10-8=i='001
>
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it follows that a decimal with one cipher immediately after the
decimal point, such as -0324, being greater than -01 and less

than -1, lies between 10~ 2 and 10
-1

; a number with two ciphers
after the decimal point lies between 10 _:i and 10""; and so on.

Hence a decimal fraction with n ciphers immediately after the
decimal point lies between 10~ ( " + 1) and 10~".

Let D be a decimal beginning with n ciphers ; thou

/) _ 1 f)~(w + l) + fraction.

.-. log J) = — (n + l) + n fraction.

Hence the characteristic is - (n+ 1) ; that is, the characteristic

of the logarithm of a decimal fraction is greater by unity titan the

number of ciphers immediately after the decimal point, and is

negative.

212. The logarithms to base 10 of all integers from 1 to

200000 have been found and tabulated j in most Tables they are

given to seven places of decimals. This is the system in practical

use, and it has two great advantages :

(1) From the results already proved it is evident that the

characteristics can be written down by inspection, so that only

the mantissse have to be registered in the Tables.

(2) The mantissse are the same for the logarithms of all

numbers which have the same significant digits; so that it is

sufficient to tabulate the mantissse of the logarithms of integers.

This proposition we proceed to prove.

213. Let N be any number, then since multiplying or

dividing by a power of 10 merely alters the position of the

decimal point without changing the sequence of figures, it follows

that N x 10''. and N -~ 107
, where p and q are any integers, are

numbers whose significant digits are the same as those of N.

Now log (N x 10p
) = log N+p log 10

= log J\
r+p (1 ).

Again, log (AT- 1 9
) - logN - q log 1

= logiV-7 (2).

In (1) an integer is added to logiV^, and in (2) an integer is

subtracted from log N ; that is, the mantissa or decimal portion

of the logarithm remains unaltered.
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In this and the three preceding articles the mantissse have

been supposed positive. In order to secure the advantages of

Briggs' system, we arrange our work so as always to keep the

mantissa positive, so that when the mantissa of any logarithm

has been taken from the Tables the characteristic is prefixed

with its appropriate sign according to the rules already given.

214. In the case of a negative logarithm the minus sign is

written over the characteristic, and not before it, to indicate that

the characteristic alone is negative, and not the whole expression.

Thus 4-30103, the logarithm of -0002, is equivalent to -4 + -30103,

and must be distinguished from — 4*30103, an expression in which
both the integer and the decimal are negative. In working with

negative logarithms an arithmetical artifice will sometimes be

necessary in order to make the mantissa positive. For instance,

a result such as - 3*69897, in which the whole expression is

negative, may be transformed by subtracting 1 from the

characteristic and adding 1 to the mantissa. Thus

- 3-69897 - - 4 + (1 - -69897) = 4-30103.

Other cases will be noticed in the Examples.

Example 1. Required the logarithm of -0002432.

In the Tables we find that 3859636 is the mantissa of log 2432 (the
decimal point as well as the characteristic being omitted) ; and, by Art. 211,
the characteristic of the logarithm of the given number is - 4

;

.-. log -0002432= 4-3859636.

Example 2. Find the value of ^-00000165, given

log 165 = 2-2174839, log 697424=5-8434968.

Let x denote the value required ; then

I l
log a- = l©g (-00000165)5 = = log (-00000165)

o

= i (6-2174839)

;

the mantissa of log -00000165 being the same as that of log 165, and the
characteristic being prefixed by the rule.

Now - (6-2174839) = - (10 + 4-2174839)

= 2-8434968
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and -8434908 is the mantissa of log 007424; hence x is a number consisting
of these same digits but with one cipher after the decimal point. [Art. 211.

J

Thus a: = -0097424.

215. The method of calculating logarithms will be explained
in the next chapter, and it will there be seen that they are first

found to another base, and then transformed into common loga-

rithms to base 10.

It will therefore be necessary to investigate a method for
transforming a system of logarithms having a given base to a
new system with a different base.

216. Suppose that the logarithms of all numbers to base a
are known and tabulated, it is required to find the logarithms
to base b.

Let N be any number whose logarithm to base b is re-

quired.

Let y = log6iV, so that b
y = N

;

•• log. (&") = logJT;

that is, ylog£ = log,JV;

1/ — r X log N.J log
a6

0u '

or k&^wK* 10^ C
1)-

1UOa°

Now since N and b are given, los: N and log b are known
from the Tables, and thus log^V may be found.

Hence it appears that to transform logarithms from base a

to base b we have only to multiply them all by ; this is aJ r J J log b

'

constant quantity and is given by the Tables; it is known as the

modulus.

217. Tn equation (1) of the preceding article put a for N\
thus

. i , i

On Oa

log/t x log
8
/j = 1 .
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This result may also be proved directly as follows

:

Let x = log/?, so that a* = b
;

then by taking logarithms to base b, we have

x \og
b
a = \og

b
b

.-. log
a
6xlog

4
a = l.

218. The following examples will illustrate the utility of

logarithms in facilitating arithmetical calculation ; but for in-

formation as to the use of Logarithmic Tables the reader is

referred to works on Trigonometry.

4 5

Example 1. Given log 3= -4771213, find log {(2-7)3 x (-81)»-H90)*}.

27 4 81 5
The required value = 3 log j= + - log

1Q
- -= log 90

= 3(l<^3»-l)+|oog3*-2)-|(log3*+l)

KM)"*a-K +
t)

= ^log3-5H

= 4-6280766-5-85

= 2-7780766.

The student should notice that the logarithm of 5 and its

powers can always be obtained from log 2 ; thus

log 5 = log — = log 10 - log 2 = 1 - log 2.

Example 2. Find the number of digits in 8751C
,
given

log 2 = -3010300, log 7 = -8450980.

log (87516) = 16 log (7x125)

= 16 (log 7+ 3 log 5)

= 16(log7 + 3-31og2)

= 16x2-9420080

=47-072128;

hence the number of digits is 48. [Art. 210.]
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Example 3. Given log 2 and log 3, find to two places of decimals the
value of x from the equation

Taking logarithms of both sides, we have

(3 - 4a) log G + (x + 5) log 4 = log 8

;

.-. (3 - 4.r) (log 2 + log 3) + (x + 5) 2 log 2 = 3 log 2

;

.-. .r ( - 4 log 2 - 4 log 3 + 2 log 2) = 3 log 2 - 3 log 2 - 3 log 3 - 10 log 2

;

10 log 2 + 3 log 3
.r =

2 log 2 + 4 log 3

_ 4-4416639

~2-al054a2

= 1-77...

EXAMPLES. XVI. b.

1. Find, by inspection, the characteristics of the logarithms of

21735, 23-8, 350, '035, % -87, -875.

2. The mantissa of log 7623 is '8821259 ; write down the logarithms
of 7-623, 762-3, -U07623, 762300, '000007623.

3. How many digits are there in the integral part of the numbers
whose logarithms are respectively

4-30103, 1-4771213, 3-69897, -56515 1

4. (Jive the position of the first significant figure in the numbers
whose logarithms are

2-7781513, -6910815, 5-4871384.

Given log 2 = -3010300, log 3 ='4771213, log 7 = -8450980, find the
value of

5. log 64. 6. log 84. 7. log -128.

8. log -0125. 9. log 14-4. 10. log 4^.

11. log^l2. 12. logW —

.

13. logN
4
/ :0l05.

\ -i

14. Find the seventh root of -00324, having given that

log 44092388 = 7-6443036.

15. Given log 194*8445 = 2'2896883, find the eleventh root of (39-2)2
.
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16. Find the product of 37-203, 3-7203, -0037203, 372030, having
given that

log 37-203= 1-5705780, and log!915631 = 6:28231 20.

3 //325**\

17. Given log 2 and log 3, find log /( —y ) .

X

18. Given log 2 and log 3, find log (#48 x 1081 -f ^6).

19. Calculate to six decimal places the value of

V/294 x 125\ 2

V 42 x 32 J
'

given log 2, log 3, log 7; also log 9076-226= 3-9570053.

20. Calculate to six places of decimals the value of

(330^-49) 4^\/22x70;

given log 2, log 3, log 7 ; also

log 11 = 1-0413927, and logl7814-1516 = 4-2507651.

21. Find the number of digits in 312 x 28
.

/21\ 100

22. Shew that ( —
J

is greater than 100.

23. Determine how many ciphers there are between the decimal

/1\ 1000

point and the first significant digit in ( -
j

Solve the following equations, having given log 2, log 3, and log 7.

24. 3*~ 2= 5. 25. 5*= 10l 26. 55 ~ 3*=2* + 2
.

27. 2F= 22* + 1 .53
-. 28. 2*. 6*- 2=52*. 7 1 "*.

29. 2x + y= 6»

3* =3
'

"I 30. 3 l ~ x-y=4-y
\

22, + ij- 22x
~ l =33j/_a;

J

31. Given log 10
2 = -30103, find log25 200.

32. Given log
10
2 = -.30103, log10 7 = -84509, find log7N/2 and logV27.



CHAPTER XVII.

EXPONENTIAL AND LOGARITHMIC SERIES.

219. In Chap. XVI. it was stated that the logarithms in

common use were not found directly, but that logarithms .are

first found to another base, and then transformed to base 10.

In the present chapter we shall prove certain formulae known
as the Exponential and Logarithmic Series, and give a brief ex-

planation of the way in which they are used in constructing a

table of logarithms.

220. To expand a
1
in ascending powers of x.

By the Binomial Theorem, if n>l,

K)"
1 nx(nx—\) 1 nx (nx — 1) (nx- 2) 1

= 1 + nx . - + —v—r
. -» + * ~± J

- . -s +
n 2 n" 3 n6

x (x ) x (x ) (x — -\

I? I

3
.

By putting sb=1, we obtain

(i).

(-')•
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hence the seizes (1) is the xih power of the series (2); that is,

1 + x + ,„ + rz

3

and this is true however great n may be. If therefore n be

indefinitely increased we have

x2 x3 xA /-'ill
1+ * +

|2
+
]3

+
|_4

+ =
(
1 + 1+

^
+
^

+ U +

1 1 1
The series 1 + 1 + — + — + — +

y

is usually denoted by e ; hence
5 3 4

x- X X
, = l + « + + + +

Write ex for x, then

cV cV
6** = - CX 4 tjj- + -ry +

Now let e
e = «, so that c = log/* ; by substituting for c we

obtain

a' = l+x\og
e
a +—Vo + ,» +

If lr

This is the Exponential Theorem.

Cor. When n is infinite, the limit of ( 1 + -
) = e.

[See Art. 266.]

Also as in the preceding investigation, it may be shewn that

when n is indefinitely increased,

(,
x\n - X2 x3 x4

1+
n)

=1+X+
Y2

+
]3

+
\i
+
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tli.tt is, when n is infinite, the limit of ( 1 + -
)
—

V nj
c
T

.

x 1
l>y putting — =

, we have

H)--K)~={K)7
Now m is infinite when n is infinite;

(x\ n

1—
J
— e *.

Hence the limit of (1 ) = e~\(-.')'

221. In the preceding article no restriction is placed upon

the value of x; also since - is less than unity, the expansions we

have used give results arithmetically intelligible. [Art. 183.]

But there is another point in the foregoing proof which
deserves notice. We have assumed that when n is infinite

/ 1\7 2\ / r-V
:)•••(•nj \ nj \ n J . xr

the limit or
,

is -r-

\r \r

for all values of r.

Let us denote the value of

iB

(
a!"3(a,~3 {x -

r

-^r)

H(*^)

by u
r

.

™, u 1 / r— 1\ as 1 1
Then —z- = -lx ) = + —

u , r \ n J r n nr

Since n is infinite, we have

U X . . x—— = -
; that is, u ~ —ur .

.

u , r r l

a

It is clear that the limit of u is r^-; hence the limit of u3 is

ft> x x
,-x-; that of u

A
is .—r- ; and generally that of u

t
is .— .
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222. The series

ii 111
E

+
H

+
~@

+ '

which we have denoted by e, is very important as it is the base

to which logarithms are first calculated. Logarithms to this

base are known as the Napierian system, so named after Napier
their inventor. They are also called natural logarithms from the

fact that they are the first logarithms which naturally come into

consideration in algebraical investigations.

When logarithms are used in theoretical work it is to be

remembered that the base e is always understood, just as in

arithmetical work the base 10 is invariably employed.

From the series the approximate value of e can be determined

to any required degree of accuracy ; to 1 places of decimals it is

found to be 2-7182818284.

Example 1. Find the sum of the infinite series

-, 1 1 1

We have e= l + l+ -- + — + -rg + ;

and by putting x = - 1 in the series for ex ,

e
"1=1 - 1+

i2-i3
+ n-

hence the sum of the series is - (e + e~ x
).

a

Example 2. Find the coefficient of xr in the expansion of
ex

1 - ax — x
o

= (1 - ax - x2
) e~x

n n fi « «* (-l) rxr 1= (l-a,-^)|l-, + -^-- + ... +L_L_ + j.
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(-!)>• (-l)'-ia (-1)'--
The coefficient required —

r

-l)r

r-1 r-2

{l + ar-r(r-l)},

223. 7V> expand log, (1 + tt) ira ascending powers of \.

From Art. 220,

/r (loge a)8
^ y

3 (log.4'

L2
a" =-• 1 + y 1< >ge r6 +

•

- + ^ v

|
c

' +

lii this series write 1 + x for a; thus

(1 +x)'J

= 1 + y log, (1 + *) + f2 {log, (1 + *)} + £ {loge (1 + a;)}
3 + ... (1).

Also by the Binomial Theorem, when x < 1 we have

(i+«y-i+» +g^*+y fr- 1>fr- 8)
rf+ (2).

Now in (2) the coefficient of y is

,+ 1.3* + 1.2J +
1.2.3.4

+ '

r**^ rp& •>••*

. m %K/ \K/ «C»

that is, £ — -- + — —- +
2i o ±

Equate this to the coefficient of y in (1) ; thus we have

l0g
t
,(l +Ct') = t7J--+ -- -+

This is known as the Logarithmic Series.

Example. If x < 1, expand {log,, (1 + x)}9 in ascending powers of .t.

By equating the coefficients of y
2 in the series (1) and (2), we see that the

required expansion is double the coefficient of y'2 in

?/(!/-!)
r2 . y (y

-

1) (y

-

2) .
,

y(y-i)(y-2)(y-3)____.x + 1.2.8 + 1.2.3.4
^ + '

that is, double the coefficient of y in

y-1 (y-l)(y-2) (y - 1) (y - 2) (y - 3)

1.2* + 1.2.3 * + "1.2.3.4 +

Thn8 {log.(l+*)P=2{^-i(l+l)^(l+l + l)«*-
}.



192 HIGHER ALGEBRA.

224. Except when x is very small the series for loge (l + x)

is of little use for numerical calculations. We can, however,

deduce from it other series by the aid of which Tables of Logar-

ithms may be constructed.

By writing — for x we obtain log. : hence

1 1 1
loS.(n+1)- lo&w = S"2? + 3^" (1) -

1 n - 1
By writing for x we obtain log

e
; hence, by changing

signs on both sides of the equation,

log
8
n - log

e
(n - 1 ) = - + s—a + #7

—
3 + (2).

From (1) and (2) by addition,

log.(" + l)-log,(n-l) = 2(- +_+__+
...J

(3).

From this formula by putting n = 3 we obtain log
e
4 — log

e 2,

that is log
e 2 ; and by effecting the calculation we find that the

value of log
6
2- -69314718...; whence log

e
S is known.

Again by putting n = 9 we obtain log
e
10 — log

e8; whence we
findlog

e
10 = 2-30258509....

To convert Napierian logarithms into logarithms to base 10

we multiply by . =-j= , which is the modulus [Art. 216] of the

1
common system, and its value is — , or '43429448...;

^' oOJjOoDk) J . .

.

we shall denote this modulus by /x.

In the Proceedings of the Royal Society of London, Vol. xxvn.
page 88, Professor J. 0. Adams has given the values of e, /x,

log
e 2, log

e 3, log
e
5 to more than 260 places of decimals.

225. If we multiply the above series throughout by /x, we
obtain formulae adapted to the calculation of common logarithms.

Thus from (1), /x loge(ra + 1) - /* loge ?i
= £ _^ + JL -. ...

•
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that is,

log
I0 (
M + 1) - log, n = £ - -t- + Jt. _ m

Similarly from (2),

l^-log]>-l)^ +^ +^ + (2) .

From either of the above results we see that if the logarithm
ot one of two consecutive numbers be known, the logarithm ofthe other may be found, and thus a table of logarithms can be
constructed. °

to J2
Sl

;

"ld
+^

e «*"«*«* that the above formula are only neededto calculate the logarithms of prime numbers, for the logarithm
ot a compose number may be obtained by adding together the
logarithms of its component factors.

In order to calculate the logarithm of any one of the smallerprime numbers, we do not usually substitute the number in either
of the formula (1) or (2), but we endeavour to find some value
ot n by which division may be easily performed, and such that
either 7^+ 1 or n-l contains the given number as a factor. Wethen find log(n+l) or log(w -l) and deduce the logarithm ofthe given number. °

Example. Calculate log 2 and log 3, given ^=-43429448.

By putting n = 10 in (2), we have the value of log 10- log 9; thus

1 - 2 log 3= -043429448 + -002171472 + -000144765 + -000010857

+ -000000868 + -000000072 + -000000006
;

1-2 log 3 =-045757488,

log 3 = -477121256.

Putting M= 80 in (1), we obtain log 81 -log 80; thus

4 log 3 - 3 log 2 - 1 = -005428681 - -000033929 + -000000283 - -000000003

;

3 log 2 = -908485024 - -005395032,

log 2 = -301029997.

In the next article we shall give another series for
iog

9 {7i + l)-\ ge
n which is often useful in the construction of

Logarithmic Tables. For further information on the subject the
reader is referred to Mr Glaisher's article on Logarithms in the
hncyclopcvdia Britannica.

H. H. A.
I

•>
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226. In Art. 223 we have proved that

2 3

log
e
(l + x) = x~2 + 3"-~-"'

changing x into - cc, we have
2 3

log.(l -«)=-*—2 ~ J"—
By subtraction,

. 1 + x {

a / x3 x5
\

Put =—- = , so that x — -x = ; we thus obtain
l-x n Zn + 1

los* (n + \) — log. n = 2< 5 7 + 777^ = va + j-t= ^-r. + ...}-.oeV ; &e
(2w + l 3(2?i + l)

3 5(2w + l)
5

J

Note. This series converges very rapidly, but in practice is not always
so convenient as the series in Art. 224.

227. The following examples illustrate the subject of the

chapter.

Example 1. If a, 8 are the roots of the equation ax2 + bx + c = 0, shew
a2 ,02 a3 . ffi

that \og(a-bx + cx'1) = loga+(a. + p)x -J—x2 + —^- x3 -...
- o

Since a + 8= — , a/3= - , we have
a a

a - bx + cx2=a {l + {a + B)x + aBx2
)

= a (1 + cur) (1 + px).

.-. log (a - bx + ex2
) = log a + log (1 + ax) + log (1 + Bx)

a-x'2 a3x3
a B2x2 B3x3

.= loga + ax- _ + _-... + Bx-'^-+^--...

= \oga + {a + B)x-
a^^

x

2 +
a*+^

x

3 - ...

Example 2. Prove that the coefficient of xn in the expansion of

2 1
log (1 + x + x2

) is — or - according as n is or is not a multiple of 3.
n n

1-x3

log (1 + x + x2
) = log--—— =log (1 - x'3) - log (1 - x)

Q X6 X9 X3r ( X2 X3 xr \



EXPONENTIAL AND LOGARITHMIC SERIES. 1 93

If n is a multiple of 3, denote it by 3,-; then the eoeffieient of *» j, _ I

from the first series, together with
g
I from the second 3eries; ^ J

coefficient is - - + - or _ ?
n n

'

n

'

If . is not a multiple „f 3, *» does not ocour in the first series, therefore
the required coefficient is -

.

n

228. To prove that e is incommensurable.

For if not, let e=™ where m and n are positive integers;

then ^ui.. 1
1 .

1 1

7i
If 1

3

(w |n+l "

multiply both sides by \n;

•
'• m ^irJ = integer + -i- + ___J___ *

1

w+1 (n+l)(n+2) (n+])(jw.2)(n+S)
+ -"

But —L + _____J_____ 1

n + 1 (n + l)(n+ 3) (n + 1)~(^T2)^T3)
+ * '

'

is a proper fraction, for it is greater than * and less than the
geometrical progression

_ +
_i i__

\3 + ••• 'jn+\ (n+1)2 ' (n+iy

that is, less than I; hence an integer is equal to an integer plus
a fraction, which is absurd; therefore e is incommensurable.

EXAMPLES. XVIL

1. Find the value of

-0 + 5-7 + ? -.-+...2^3 4
+ 5~6

2. Find the value of

2 2 . 22 ^ 3 . 23 i724 + 5 . 25 "
'

*

15 9
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3. Shew that
a a? a?hge(n+a)-logt(n-a)=2l- +^.+_+ \

*\*& />»o O"**
»</ %A/ *t/

4. if y=*'-2 +-3 - 4 +•••»

2 3

shew that x=y +^- + ^ + . . .

.

5. Shew that

+ ~ (- : )+^P ' ) +... = log
e
a-loge Z>.

a 2 V~^"/
+

3 V a

6. Find the Napierian logarithm of —— correct to sixteen places

of decimals.

/ 1 2 3 \
7. Prove that e"1= 2 ( .- + .-= + nr +....) .

8. Prove that

iog,d +xr« ( i
-»•)'-'=«(£ +

o

+o +••••) •

9. Find the value of

H ''-2 -f

+

j2
(-'
4
- #

4
) + |i

^ -
-

//,m +
•

•

10. Find the numerical values of the common logarithms of 7, 1

1

and 13; given ^= -43429448, log 2= '30103000.

11. Shew that if ax2 and —
2
are each less unity

12. Prove that

log
c (l + 3a-+2^2

) = 3.r-— + — — + ...

;

and find the general term of the series.

13. Prove that

, 1 + 3.? „ 5x2 S5X3 65.iT4

and find the general term of the series.

14. Expand —^— in a series of ascending powers of x.
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15. Express - (eix+ e~ ix
) in ascending powers of .r, -where i'= </ — 1.

25

16. Shew that

17. If a and /3 be the roots of x2 -jtxr+ tf = 0, shew that

a2 4- ft2 n3 4- ft3

18. If .r<l, find the Bum of the series

1 „ 2 , 3 4 .

19. Shew that

i A i\n
-,

i i
log, (1 + -) =1

nj 2(»+ l) 2.3(>4-l)2 3.4(>t + l)3 ""

l+.r+ .^+ .t-
3

1

20. If log,
., x ^,^^,2^ ,3

De expanded in a series of ascending

powers of #, shew that the coefficient of o:
n is — if n be odd, or of

3
the form 4m+ 2. and - if n be of the form 4m.

21. Shew that

22. Prove that

23
, 33 43

1 +
]2
+

J3
+

(4
+ - =5e -

2 log, n - log, (« + 1) - log, (» _ 1)=- + — + _ +

23. Shew that — 1
— — +

ft+ 1 2(?i+l) 2 ' 3(7i+I)3 "

1 1_ 1

n 2?i2 3n3

<) 24 81
24. If log,

Yq
= - «, loge 25

= ~ ?;
'

1()S« go
= C

'
sheW that

log, 2= 7a- 26+ 3c, log, 3 = 1 1 a - 36 + 5c, log, 5 = 1 6a - Ah + Vc

;

and calculate log, 2, log, 3, k>g
e 5 to 8 places of decimals.



CHAPTER XVIII.

INTEREST AND ANNUITIES.

229. In this chapter we shall explain how the solution of

questions connected with Interest and Discount may be simplified

by the use of algebraical formulae.

"We shall use the terms Interest, Discount, Present Value in

their ordinary arithmetical sense ; but instead of taking as the

rate of interest the interest on ,£100 for one year, we shall find it

more convenient to take the interest on £1 for one year.

230. To find the interest and amount of a given sum in a

given time at simple interest.

Let P be the principal in pounds, r the interest of £1 for one

year, n the number of years, I the interest, and M the amount.

The interest of P for one year is Pr, and therefore for n years

is Pnr ; that is,

/ =Pnr (1).

Also M = P + I;

that is, M=P(l+nr) (2).

From (1) and (2) we see that if of the quantities P, n, r, 7,

or P, ?i, r, M, any three be given the fourth may be found.

231. Tofind the present value and discount of a given sum
due in a given time, allowing simple interest.

Let P be the given sum, V the present value, D the discount,

r the interest of £1 for one year, n the number of years.

I
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Since V is the sum which put out to interest at the present

time will in u years amount to P, we have

P= V(\+nr);

1 + nr

P
And D = P -

1 + nr '

Pnr

1 + nr

'

Note. The value of D given by this equation is called the true discount.

But in practice when a sum of money is paid before it is due, it is customary

to deduct the interest on the debt instead of the true discount, and the

money so deducted is called the banker's discount; so that

Banker's Discount = Pnr.

Pnr
True Discount =

1 + nr'

Example. The difference between the true discount and the banker's

discount on £1900 paid 4 months before it is due is 6s. 8d.; find the rate

per cent., simple interest being allowed.

Let r denote the interest on £1 for one year; then the banker's discount

1900r

•
1900 ''

i «. * a- *
~~
^~

is — -— , and the true discount is

i*
1900r

1900r ~3~ 1
""• ~3~ 7~T~3 ;

l
+i

r

whence 1900r2=3 + >-;

1 ±Jl + 22800 _ 1±151
*'• r~

3800 ~ 3800 '

t, • • . ,
152 1

Rejecting the negative value, we nave f—aSui = o? «

.-. rate per cent. = 100r = 4.

232. To find the interest and amount of a given sum in a

given time at compound interest.

Let P denote the principal, 7? the amount of £1 in one year,

n the number of years, I the interest, and M the amount.
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The amount of P at the end of the first year is PR ; and, since

this is the principal for the second year, the amount at the end of

the second year is PR x R or PR2
. Similarly the amount at the

end of the third year is PR3
, and so on ; hence the amount in

n years is PR" \ that is,

M=PR";
.'. I=P(Rn

-l).

Note. If r denote the interest on £1 for one year, we have

R = l+r.

233. In business transactions when the time contains a

fraction of a year it is usual to allow simjyle interest for the

fraction of the year. Thus the amount of ,£1 in ^ year is

v
reckoned 1 + -

; and the amount of P in 4f years at compound

interest is PR* (1 + ^ r
J

. Similarly the amount of P in

n + — years is PR" (In— )

.

m \ m/

If the interest is payable more than once a year there is a

distinction between the nominal annual rate of interest and that

actually received, which may be called the true annual rate ; thus

if the interest is payable twice a year, and if r is the nominal
r

annual rate of interest, the amount of £1 in half a year is 1 +-^ ,

and therefore in the whole year the amount of <£1 is (1 + -J,

r
2

or 1 + r + — ; so that the true annual rate of interest is
4

r
2

234. If the interest is payable q times a year, and if r is

the nominal annual rate, the interest on .£1 for each interval is

r
- , and therefore the amount of P in n years, or qn intervals, is

In this case the interest is said to be "converted into principal"

(f
times a year.
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If the interest is convertible into principal every moment,
then q becomes infinitely great. To find the value of the amount,

r 1
put - = —

, so that q - rx : thus
q x

the amount = P (l +-Y =P(l + -Y" = P {(l + i)T'

= Penr

,
[Art. 220, Cor.,]

since x is infinite when q is infinite.

235. To find the present value and discount of a given stun
due in a given time, allowing comjwund interest.

Let P be the given sum, V the present value, D the discount,

R the amount of £1 for one year, n the number of years.

Since V is the sum which, put out to interest at the present
time, will in n years amount to P, we have

P=VRn
',

it

and D = P(l-R-).

Example. The present value of £672 due in a certain time is £126; if

compound interest at 4£ per cent, be allowed, find the time; having given

log 2= -30103, log 3 = -47712.

Here
Hol)= iI'

*»**=!'

Let n be the number of years ; then

672=126y ;

. 25 . 672
•'• ?ll0g

24
= 1°g

i26-'

. 100 . 16
or ?ilog

96
=logy

;

.-. n (log 100 - log 96) = log 16 - log 3,

4 log 2 - log 3
n =

2 - 5 log 2 - log 3

•72700

"
=

-01773
=

'

Veiy nea y
'

thus the time is very nearly 41 years.
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EXAMPLES. XVIII. a.

When required the following logarithms may be used,

log 2= -3010300, log 3 = '4771 213,

log 7 = -8450980, log 11 = 1-0413927.

1. Find the amount of £100 in 50 years, at 5 per cent, compound
interest; given log 114-674= 2-0594650.

2. At simple interest the interest on a certain sum of money is

,£90, and the discount on the same sum for the same time and at the

same rate is £80 ; find the sum.

3. In how many years will a sum of money double itself at 5 per

cent, compound interest ?

4. Find, correct to a farthing, the present value of £10000 due

8 years hence at 5 per cent, compound interest
;
given

log 67683-94= 4-8304856.

5. In how many years will £1000 become £2500 at 10 per cent,

compound interest ?

6. Shew that at simple interest the discount is half the harmonic
mean between the sum due and the interest on it.

7. Shew that money will increase more than a hundredfold in

a century at 5 per cent, compound interest.

8. What sum of money at 6 per cent, compound interest will

amount to £1000 in 12 years ? Given

log 106= 2-0253059, log 49697 = 4-6963292.

9. A man borrows £600 from a money-lender, and the bill is

renewed every half-year at an increase of 1 8 per cent. : what time will

elapse before it reaches £6000 1 Given log 1 18= 2-071882.

10. "What is the amount of a farthing in 200 years at 6 per cent,

compound interest? Given log 106= 2-0253059, log 11 5-0270 = 2-0611800.

Annuities.
*

236. An annuity is a fixed sum paid periodically under

certain stated conditions ; the payment may be made either once

a year or at more frequent intervals. Unless it is otherwise

stated we shall suppose the payments annual.

An annuity certain is an annuity payable for a fixed term of

years independent of any contingency ; a life annuity is an

annuity which is payable during the lifetime of a person, or of

the survivor of a number of persons.
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A deferred annuity, or reversion, is an annuity which does

not begin until after the lapse of a certain number of years ; and
when the annuity is deferred for n years, it is said to commence
after n years, and the first payment is made at the end of n + 1

years.

If the annuity is to continue for ever it is called a perpetuity
;

if it does not commence at once it is called a deferred perpetuity.

An annuity left unpaid for a certain number of years is said

to be forborne for that number of years.

237. Tofind the amount of an annuity left unpaidfor a given

number of years, allowing simple interest.

Let A be the annuity, r the interest of £1 for one year, n the

number of years, M the amount.

At the end of the first year A is due, and the amount of this

sum in the remaining n - 1 years is A + (n — 1) rA ; at the end of

the second year another A is due, and the amount of this sum in

the remaining (a— 2) years is A + (ii — 2) rA • and so on. Now
M is the sum of all these amounts

;

.-. M={A + (n-l)rA} + {A + (n-2)rA} + + (A + rA) + A,

the series consisting of n terms

;

.-. J/=Wil+(l + 2 + 3+ +n-l)rA

= nA + —K——'- rA.

238. To find the amount of an annuity left unpaid for a
given number of years, allowing compound interest.

Let A be the annuity, R the amount of <£1 for one year, n
the number of years, M the amount.

At the end of the first year A is due, and the amount of this

sum in the remaining n— 1 years is ARn ~ x

; at the end of the

second year another A is due, and the amount of this sum in the

remaining n - 2 years is ARn~ 2
; and so on.

.-. M = ARn ~ x + AR"- 2 + +AR2 + AR + A

= A(l +R + R2 + to n terms)

. Rm -

1

= A R^l-
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239. In finding the present value of annuities it is always

customary to reckon compound interest; the results obtained

when simple interest is reckoned being contradictory and un-

trustworthy. On this point and for further information on the

subject of annuities the reader may consult Jones on the Value

ofAnnuities and Reversionary Payments, and the article Annuities

in the Encyclopaedia Britannica.

240. To find t/ie present value of an annuity to continue for

a (jiven number of years, allowing compound interest.

Let A be the annuity, R the amount of £>\ in one year, n
the number of years, V the required present value.

The present value of A due in 1 year is AR~ l

;

the present value of A due in 2 years is AR~'J

;

the present value of A due in 3 years is AR~ 3

;

and so on. [Art. 235.]

Now V is the sum of the present values of the different

payments

;

.-. V=AR- 1 +AR- 3 + AK- 3
+ tow terms

1 - R~"
=AR~ l

= A

l-R- 1

1-R-"
R-l

Note. This result may also be obtained by dividing the value of M,
given in Art. 238, by Rn

. [Art. 232.]

Cor. If we make n infinite we obtain for the present value

of a perpetuity

R-V r
'

241. If mA is the present value of an annuity A, the annuity

is said to be worth m years' purchase.

In the case of a perpetual annuity mA — — ; hence

1 100
m = - =

r rate per cent.
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that is, the number of years' purchase of a perpetual annuity is

obtained by dividing 100 by the rate per cent.

As instances of perpetual annuities we may mention the
income arising from investments in irredeemable Stocks such as
many Government Securities, Corporation Stocks, and Railway
Debentures. A good test of the credit of a Government is fur-

nished by the number of years' purchase of its Stocks ; thus the

2| p. c. Consols at 96} are worth 35 years' purchase ; Egyptian
4 p. c. Stock at 96 is worth 24 years' purchase ; while Austrian
5 p. c. Stock at 80 is only worth 16 years' purchase.

242. To find the present value of a deferred annuity to

commence at the end of p years and to continue for n years, allow-

ing compound interest.

Let A be the annuity, R the amount of £1 in one year, V the
present value.

The first payment is made at the end of (;> + l) years.

[Art. 236.]

Hence the present values of the first, second, third... pay-

ments are respectively

AR- {* +l
\ AR- (p+2

\ AR- (p+3
\ ...

.'. V=AR- (p+l) + AR- {p+»+AR- (1,+3>+ ton terms

1 7?~"

= AR~ (p+1) - —

—

AR~ V AR-p -"

Cor. The present value of a deferred perpetuity to commence
after p years is given by the formula

V ~R-V
243. A freehold estate is an estate which yields a perpetual

annuity called the rent ; and thus the value of the estate is equal

to the present value of a perpetuity equal to the rent.

It follows from Art. 241 that if we know the number of years'

purchase that a tenant pays in order to buy his farm, we obtain

the rate per cent, at which interest is reckoned by dividing 100

by the number of years' purchase.
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Example. The reversion after 6 years of a freehold estate is bought for

£20000; what rent ought the purchaser to receive, reckoning compound
interest at 5 per cent. ? Given log 1-05 = -0211893, log 1-340096 = -1271358.

The rent is equal to the annual value of the perpetuity, deferred for 6
years, which may be purchased for £20000. '

Let £A be the value of the annuity; then since .R = l-05, we have

20000^* ^°5'-6

;
•0o

.-. A x (1-05)

~

6= 1000;

log A -6 log 1-05 = 3,

log A = 3-1271358 = log 1340-09G.

.-. A = 1310-096, and the rent is £1340. Is. lid.

244. Suppose that a tenant by paying down a certain sum
lias obtained a lease of an estate for p + q years, and that when

q years have elapsed he wishes to renew the lease for a term

p + n years ; the sum that he must pay is called the fine for

renewing n years of the lease.

Let A be the annual value of the estate ; then since the

tenant has paid for p of the p + n years, the fine must be equal

to the present value of a deferred annuity A, to commence after

p years and to continue for n years ; that is,

. n AR-* AR-p~n
r 4

the fine = -=—
. [Art. 242.1

A — 1 A — 1

EXAMPLES. XVIII. b.

The interest is supposed compound unless the contrary is stated.

1. A person borrows ,£672 to be repaid in 5 years by annual in-

stalments of ,£120; find the rate of interest, reckoning simple interest.

2. Find the amount of an annuity of ,£100 in 20 years, allowing
compound interest at 4| per cent. Given

log 1-045 = -0191163, log24-117 = 1-3823260.

3. A freehold estate is bought for £2750 ; at what rent should it

be let so that the owner may receive 4 per cent, on the purchase money ?

4. A freehold estate worth £120 a year is sold for £4000; find the
rate of interest.
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5. How many years' purchase should be given for a freehold

estate, interest being calculated at 3i per cent.?

6. If a perpetual annuity is worth 25 years' purchase, find the
amount of an annuity of £625 to continue for 2 years.

7. If a perpetual annuity is worth 20 years' purchase, find the
annuity to continue for 3 years which can be purchased for £2522.

8. When the rate of interest is 4 per cent., find what sum must
be paid now to receive a freehold estate of £400 a year 10 years hence;
having given log 104 = 2-0170333, log 675565- -8296670.

9. Find what sum will amount to £500 in 50 years at 2 per cent.,

interest being payable every moment; given e
_1 = '3678.

10. If 25 years' purchase must be paid for an annuity to continue
n years, and 30 years' purchase for an annuity to continue 2?i years,

find the rate per cent.

11. A man borrows £5000 at 4 per cent, compound interest ; if the
principal and interest are to be repaid by 10 equal annual instalments,

find the amount of each instalment ; having given

log 1-04 =-01 70333 and log 675565= 5-829667.

12. A man has a capital of £20000 for which he receives interest

at 5 per cent. ; if he spends £1800 every year, shew that he will be
ruined before the end of the 17th year; having given

log 2 = '3010300, log 3= '4771213, log 7 = '8450980.

13. The annual rent of an estate is £500 ; if it is let on a lease

of 20 years, calculate the fine to be paid to renew the lease when 7 years

have elapsed allowing interest at 6 per cent. ; having given

logl06 = 2-0253059, log4-688385 = '6710233, log3'118042 = '4938820.

14. If a, b, c years' purchase must be paid for an annuity to con-

tinue n, 2/i, 3?i years respectively; shew that

a2 — ab + b2= ac.

15. What is the present worth of a perpetual annuity of £10
payable at the end of the first year, £20 at the end of the second,

£30 at the end of the third, and so on, increasing £10 each year;
interest being taken at 5 per cent, per annum ?



CHAPTER XIX.

INEQUALITIES.

245. Any quantity a is said to be greater than another
quantity b when a -b is positive; thus 2 is greater than -3,
because 2 - (- 3), or 5 is positive. Also b is said to be less
than a when b- a is negative; thus -5 is less than -2, because
— 5— (— 2), or - 3 is negative.

In accordance with this definition, zero must be regarded as
greater than any negative quantity.

In the present chapter we shall suppose (unless the contrary
is directly stated) that the letters always denote real and positive
quantities.

246. If a > b, then it is evident that

a +

c

> b + c

;

a — c > b — c
;

ac > be

;

a b

that is, an inequality will still hold after each side has been
increased, diminished, multiplied, or divided by the same positive
quantity.

247. If a-ob,
by adding c to each side,

a>b+ c;

which shews that in an inequality any term may be transposed
from one side to the other if its sign be changed.

If a > b, then evidently b < a

;

that is, if the sides of an inequality be transposed, the sign of
inequality must be reversed.
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If a > b, then a - b is positive, and b-a is negative; that
is, — a — (— b) is negative, and therefore

— a < — b
;

hence, if the signs of all the terms of an inequality be changed,
the sign of inequality must be reversed.

Again, if a > b, then —a < — b, and therefore

— ac < — be

;

that is, if the sides of an inequality be multiplied by the same
negative quantity, the sign of inequality must be reversed.

248. If a.>b,, a. > boi a^>b.,, a >b , it is clear

that

a
l

+ a
2
+ a

3
+...+ am > 6, + b^+b

a
+ ... + bm ;

and a
:
a

2
a,--' a

,n
>hAK-'- b

,>r

249. If a>b, and if p, q are positive integers, then ^/a>^Jb,11 V V

or a 1 > b9
; and therefore a'

1 > b' ; that is, a'
1 > b'\ where n is any

positive quantity.

Further, — < =-
; that is a~ n < b~".

250. The square of every real quantity is positive, and
therefore greater than zero. Thus (a - b)

2
is positive

;

. . a2 — 2ab + b
2 > ;

.
•

. a2 + b
2 > 2ab.

Similarly -—^ > Jxy ;

that is, the arithmetic mean of tivo positive quantities is greater

than their geometric mean.

The inequality becomes an equality when the quantities are

equal.

251. The results of the preceding article will be found very

useful, especially in the case of inequalities in which the letters

are involved symmetrically.

H. H. A. li
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Example 1. If a, b, c denote positive quantities, prove that

a2 + b2+c2 >bc + ca + ab;

and 2 (a3 + b3+ c3)>bc (b + c) + ca(c + a) + ab (a + b).

For &2 + c2 >2bc (1);

c2 + a2 >2c«;

a2 + b2 >2al);

whence by addition a2 + b2 + c2> be + ca + a&.

It may be noticed that this result is true for any real values of a, b, c.

Again, from (1) b2 -bc + c2 >bc (2);

.-. b3 + c3 >bc(b+c) (3).

By writing down the two similar inequalities and adding, we obtain

2 (a3 + b3 + c3)

>

be (b + c) + ca [c + a) + ab{a+b).

It should be observed that (3) is obtained from (2) by introducing the
factor b + c, and that if this factor be negative the inequality (3) will no
longer hold.

Example 2. If x may have any real value find which is the greater,

.r
3 +l or x2+ x.

x3 +l- (x2 + x) =x3 -

x

2 - (x - 1)

= (x2 -l)(x-l)

= (.r-l) 2
(* + l).

Now [x - l)2 is positive, hence

x3 + 1 > or < x2 + x

according as x + 1 is positive or negative; that is, according as x > or < - 1.

If x— - 1, the inequality becomes an equality.

252. Let a and b be two positive quantities, $ their sum
and P their product ; then from the identity

4a6 = (a + bf - (a - b)\

we have

iP = S2 - (a - b)
2
, and S2 = ±P+(a- b)

2
.

Hence, if S is given, P is greatest when a — b\ and if P is

given, S is least when
a= b;

that is, if the sum of two positive quantities is given, their product
is greatest when they are equal ; and if the product of two positive

quantities is given, their sum is least when they are equal.
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253. To find the greatest value of a product the sum of whose

factors is constant.

Let there be n factors a, b, c, ... k, and suppose that their

sum is constant and equal to s.

Consider the product abc ... k, and suppose that a and b are

any two unequal factors. If we replace the two unequal factors

Tii ii> a + b a + b , , .. ,

a, b by the two equal factors —— ,
-— — the product is increased

while the sum remains unaltered ; hence so long as the product

contains two unequal factors it can be increased tvithout altering

the sum of the factors ; therefore the product is greatest when all

the factors are equal. In this case the value of each of the n
s /s\"

factors is -
, and the greatest value of the product is ( -

) ,n \nj

/a + b + c + ... +k\

\ n )

or
\n/ '

a + b + c+ ... +k\"

Cor. If «, b, c, ... k are uneqiud,

/a + b + c + ... +k\ n
7 7

( ) > abc ... k
;

\ n J
that is,

a + b + c+ ... + k

n
> (abc ... k)".

By an extension of the meaning of the terms arithmetic mean
and geometric mean this result is usually quoted as follows

:

the arithmetic mean of any number of positive quantities is greater

than the geometric mean.

Example. Shew that (lr + 2r + S r + . . . + nr)
n > nn

(
\nY ;

where r is any real quantity.

c .
lr + 2r+Zr + +nr 1

Since >(l r .2 r .3 r «r)' 1

;

n

.'. (
)
>l r .2r .3 r nr , that is, >(|»)

r
;

whence wo obtain the result required.

14—2
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254. To find the greatest value q/'a
mb"cp . . . when a + b + c + ...

is constant; m, n, p, ... being positive integers.

Since m, n, p,... are constants, the expression ambn
cp ... will

be greatest when (
—

) (-) (
- ) ... is greatest. But this last& \mj \nj \pj

&

expression is the product of m + n +p + ... factors whose sum is

m ( — )+ n (—) + p ( — ) + .. ., or a + b + c + . . ., and therefore con-
\mj \nj * \pj

stant. Hence ambn
c
p
... will be greatest when the factors

a o c

ni n p

are all equal, that is, when

a b c a + b + c +

m n p m+n+p +

Thus the greatest value is

/a + b + c+ ...\
M4*4*+"

mmnn

pp
. . . (

)

Example. Find the greatest value of (a + x) s (a -a:) 4 for any real value
of x numerically less than a.

The given expression is greatest when
(
——

J
( —j— j is greatest ; but

the sum of the factors of this expression is 3 ( —^-
J
+ 4 I —^— ) , or 2a;

hence {a + x) 3 (a - x)* is greatest when —^— = —^— , or x= - - .

63
. 84

Thus the greatest value is
*

a7
.

255. The determination of maximum and minimum values

may often be more simply effected by the solution of a quad-
ratic equation than by the foregoing methods. Instances of

this have already occurred in Chap. ix. ; we add a further

illustration.

Example. Divide an odd integer into two integral parts whose product
is a maximum.

Denote the integer by 2/i + 1 ; the two parts by x and 2n + 1 - x ; and
the product by y ; then (2n + 1) x - x*= y ; whence

2x = (2n + 1) ± V^h + I)2-^ ;
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but the quantity under the radical must be positive, and therefore y cannot11
be greater than - (2/t + l) 2

, or n'
2 + n + -

; and since y is integral its greatest

value must be n- + n\ in which case x =n+ 1, or n ; thus the two parts are n
and n+1.

256. Sometimes we may use the following method.

Example. Find the minimum value of '
—

' — '

.

c + x

Put c+x=y ; then

.. . (a-c + y){b-c + y)the expression = ^-^ -

y

_ (a - c) (b - c)
+y+a-c+b-c

(
a ~ C

Jy

b ~ C)

-^yy + a-c + b-c +2j(a-c)(b-c) .

Hence the expression is a minimum when the square term is zero ; that

is when y=J(a -c)(b- c).

Thus the minimum value is

a-c + b-c + 2 *J(a - c) (b - c)

;

and the corresponding value of x is */(« - c) {b - c) -c.

EXAMPLES. XIX. a.

1. Prove that (ab + xy) (ax+ by) > 4abxy.

2. Prove that (b + c) (c+ a) (a+ b) > 8abc.

3. Shew that the sum of any real positive quantity and its

reciprocal is never less than 2.

4. If a2+ b2= l, and x2+y2 = l, shew that ax+ by<\.

5. If « 2 + 62+ c2 =l, and x2 +y2+ z2= l, shew that
ax + by+ cz < 1.

6. If a > b, shew that aabb > abba, and loe - < losr =
.

7. Shew that (.r
2^ +y

2z + z2x) (xy2 +yz2+ zx2) > D.'-'-V -
2
.

8. Find which is the greater 3«62 or aP+263
.

9. Prove that a36 + ab3 < «4 + 64
.

10. Prove that 6abc < be (b+ c) + ca(c+ a) + ab (a + b).

11. Shew that b 2
c°-+ c2a2+ a2b2 > abc (a + b + c).
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12. Which is the greater x3 or x2+x+ 2 for positive values of x%

13. Shew that x3 + lSa2x > hax*+ 9a3
, if x > a.

14. Find the greatest value of x in order that 7x2+ 11 may be

greater than x^+ Hx.

15. Find the minimum value of x2 - 12#+40, and the maximum
value of 24? - 8 - 9x2

.

16. Shew that
( \nf

> »• and 2 . 4 . 6. . . 2?i< (w+ l)n .

17. Shew that (x+y+ ,s)
3 > 27^^.

18. Shew that n* > 1 . 3 . 5 . . .(2n - 1 ).

19. If ?i be a positive integer greater than 2, shew that

2 ft >l+?iV2,7_1
.

21. Shew that

(1) (x+y +z)3 > 27 (y+z- x) (z+ x - y) (x+y - z).

(2) xyz>(y+z-x)(z+ x-y)(x+y-z).

22. Find the maximum value of (7 - x)A
(2 + #)

5 when # lies between
7 and - 2.

no T7- v xu • •
1 f (5 + x)(2 + x)

23. Find the minimum value of =-*-* .

1+*

*257. To prove that if a and b are positive and unequal,

am+bm /a + b\m
"

.— >
(
——

) ,
except when m xs a positive properjraction.

We have a1
" + 6

m = f -y- +
-^-J

+ ( -^
g-J

; and

since —~— is less than —— , we may expand each of these
L -

expressions in ascending powers of —— . [Art. 184.]
2

a" + 6
m /a + b\

m m (m - 1) (a + b\"—- fa - b\*
•'•"~2~ =

v~2-J
+

1.2 \~r) \~r)
m (m - \)(m - 2)(m-3) fa + bV"-

4

fa - b\
4

+
1.2.3.4 "A 2 J 12 j

+ '"
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(1) If m is a positive integer, or any negative quantity,

all the terms on the right are positive, and therefore

a" + b'
n

fa + b
s

= >
fa + 6V"

\2~) '

(2) If m is positive and less than 1, all the terms on
the right after the first are negative, and therefore

am + b
m

fa + fr—--— <
fa + b\

m

(3) If on > 1 and positive, put m = - where n < 1 ; then
76

i i i

+ b
m
\
m fd" + b 7l

\
Hfa

m + b
m
\
m fan + b n

\
n

{-2 ) = (-2-) ;

1 1 1

'a
m + b

m
\
m

(a*)
m + (b»)

H

, /ox—o— > o i
]jy (

2
)

i

> + b'"\"
1 a + b
> —~

—

.*. —=— >
fi-7

Hence the proposition is established. If m = 0, or 1, the

inequality becomes an equality.

*25&. If there are n 'positive quantities a, b, c, ...k, then

am+bm + cm + ... + km /a + b + c+...+k
> )

n \ n

unless m & rt positive properfraction.

Suppose on to have any value not lying between and 1.

Consider the expression am + b
m + c"

1 + ... + k"\ and suppose

that a and b are unequal ; if we replace a and b by the two equal

.... a + b a + b .. , „ ,
7quantities —— ,

—- , the value or a + + c+...+fc remains un-
_i -j

altered, but the value of a"
1 + b

m + c
m + ... + k'" is diminished, since
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Hence so long as any two of the quantities a, b, c,...&are unequal
the expression am + b

m + c
m + ... + km can be diminished without

altering the value of a + b + c + ...+k; and therefore the value
of a"

1 + b'
n + c

m + . . . + km will be least when all the quantities

a, b, c,...k are equal. In this case each of the quantities is equal

a + b + c + ... + k
to ;

n

and the value of am + b
m + c

m + ... +km then becomes

fa + b + c + . . . + k\m
n

{ » )
•

Hence when a, b, c,...k are unequal,

fa + b + c + ... + k\ mam + b
m
+ c

n +...+le
m

/a + b + c+ ...+fc>
n

If ?n lies between and 1 we may in a similar manner prove
that the sign of inequality in the above result must be reversed.

The proposition may be stated verbally as follows :

The arithmetic mean of the mth powers of n positive quantities

is greater than the mth power of their arithmetic mean in all cases

except when m lies between and 1.

*259. If a and h
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*2G0. To prove that 'I±^- /lh V
X

/I +
>

i-x' v i-y 5

if'x and y are properfractions and ])ositive, and x > y.

x /l+xFor .71±f >flr< //g* |

,. 1 . 1 + a 1 1 + yaccording as -lo<?-n > or < - log
l-x y °l-2/'

But S^lzS" 2^ +? + ?+•••)» tAAM^

and Ilog^2(l + !\
2/

& 1-2/ \ 3 5 7
'

1 . 1 4- a; 1 . \+y
- log > - log -—-

,

x * l-x y ° 1 -
y

'

and thus the proposition is proved.

•261. To prove that (1 + x),+x (1 -x) 1_x >l, if x<l, and to

777 , k /a + b\ a+b

d i'
<luce that aabD > ( _

J

Denote (1 +jb)
1+* (1 -a)

1- * by P; then

logP = (l+a)log(l + x) + (l -aj)log(l-a;)

= x {log (1 +x)- log (1 - x)) + log (1 + x) + log (l—x)

r\ I **s JO \ _ / *C i// SI/ \
= 2x^ +

3
+ ^ + ...)-2^ + 1 + -

6
+ ...)

--. / •*/ JC Jit \

Hence log P is positive, and therefore P> 1

;

that is, (1 +*)
1 + r

(l -*)'-'>!.
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f9

In this result put x = —
, where u> z ; then

u
Z Z

sY +w/, z\ l ~u

{
1 +

u) ^-i) %1
;

'u + z\y-^Y->r>rl .

\ u J \ u J

.'. (u + z)
u+*(u-z)u- z>u2u

.

Now put u + z = a, u — z = b, so that w = ———
;

(TJ

* EXAMPLES. XIX. b.

1. Shew that 27 (a4+ &4+ c4) > (a+ b+ c)\

2. Shew that n (n+ l)3 < 8 (l 3 + 23 + 33+ ... + n3
).

3. Shew that the sum of the mih powers of the first n even num-
bers is greater than n (n+ l)m, if m > 1.

4. If a and /3 are positive quantities, and a > /3, shew that

(-SM-jr-
Hence shew that if n > 1 the value of ( 1 + -

) lies between 2 and

2-718...

5. If a, b, c are in descending order of magnitude, shew that

/a+ c\ a
^. fb+ c\ b

\a-c) \b-cj

'a+ b + c+...+k\ a + b + c + -- + ,i

6. Shew that (
a '

~ v
'

v ~

) < aabb<*. . .>&*.

7. Prove that - log (1 + am) < - log (1 + an), if m > n.
lib Ih

8. If ii is a positive integer and x < 1, shew that

1 _ #n + 1 J _ A.n

<
?&+

1

n
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9. If a, b, c are in H. P. and »> 1, shew that n n
-\-cn > 2bn.

10. Find the maximum value of x3 (4a - .r)
5 if x is positive and less

i i

than 4a; and the maximum value of x*(\—xf when x i.s a proper
fraction.

11. If x is positive, shew that log (1 +.r) < x and
1+.?;

"

12. If x+ y + z=l, shew that the least value of - -\ h- is i)

:

x y z

and that (1 - x) (1 - y) (1 - z) > 8xyz.

13. Shew that (a+b+c+d) (a3+ 63+ c3+ a73) > (a2+ 6*+ c2+ cl2f.

14. Shew that the expressions

a(a-b)(a-c) + b (b- c) (b-a) + c (c-a) (c - b)

and cfi{a-b)(a-c) + b2 (b-c){b-a) + c2 (c-a){c-b)

arc both positive.

15. Shew that (xm +y
m

)
n < (.t'

n+yn
)
MI

, if m > n.

fa 4-h\ a + b

16. Shew that abfr < (^p) .

17. If at, 6, c denote the sides of a triangle, shew that

(1

)

a2 (p-q)(p- r) + b2 (q - r) (q -p) + c2 (r -p) (r - q)

cannot be negative; p, q, r being any real quantities;

(2) ah/z+ b2zx+ c2xy cannot be positive, if x+y+ z= 0.

18. Shew that [1 j3 15 \2n-l > (\n)n

19. If a,b,c, d, are p positive integers, whose sum is equal

to n, shew that the least value of

\a\bJ±\ cL » (|g)
P" r

(|g+ 1 )
r
>

where q is the quotient and r the remainder when n is divided by £>.



CHAPTER XX.

LIMITING VALUES AND VANISHING FRACTIONS.

a
262. If a be a constant finite quantity, the fraction -- can

x

be made as small as we please by sufficiently increasing x ; that

a
is, we can make - approximate to zero as nearly as we please

by taking x large enough ; this is usually abbreviated by saying,

" when x is infinite the limit of - is zero."
x

Again, the fraction - increases as x decreases, and by making
x

x as small as we please we can make as large as we please

;

x

thus when x is zero - has no finite limit; this is usually ex-
JO

pressed by saying, " when x is zero the limit of - is infinite."

263. When we say that a quantity increases without limit

or is infinite, we mean that we can suppose the quantity to become
greater than any quantity we can name.

Similarly when we say that a quantity decreases without

limit, we mean that we can suppose the quantity to become
smaller than any quantity we can name.

The symbol go is used to denote the value of any quantity

which is indefinitely increased, and the symbol is used to

denote the value of any quantity which is indefinitely dimi-

nished.
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204. The two statements of Art. 2G2 may now be written

symbolically as follows :

if x is co , then - is ;

x

if x is , then is co .

x

But in making use of such concise modes of expression, it

must be remembered that they are only convenient abbreviations

of fuller verbal statements.

26~>. The student will have had no difficulty in understanding

the use of the word limit, wherever we have already employed it;

but as a clear conception of the ideas conveyed by the words

limit and limiting value is necessary in the higher branches of

Mathematics we proceed to explain more precisely their use and
meaning.

266. Definition. If y =f(x), and if when x approaches a

value a, the function f(x) can be made to differ by as little as

we please from a fixed quantity b, then b is called the limit of

y when x — a.

For instance, if S denote the sum of n terms of the series

1+2 +
2

2
+ 2~J + '"

;
then 'S'

= 2 ~2^- t
Art 56 *1

Here S is a function of n, and ^— , can be made as small

as we please by increasing n ; that is, the limit of S is 2 when
n is infinite.

267. We shall often have occasion to deal with expressions

consisting of a series of terms arranged according to powers of

some common letter, such as

a + a
x
x + aax" + a

3
x3 +

where the coefficients o , a,, a
2 , a

3 , ... are finite quantities

independent of x, and the number of terms may be limited or

unlimited.

It will therefore be convenient to discuss some propositions

connected with the limiting values of such expressions under
certain conditions.
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268. The limit of the series

a + a
x
x + a

2
x2 + a

3
x3 +

when x is indefinitely diminished is a .

Suppose that the series consists of an infinite number of terms.

Let b be the greatest of the coefficients alf asi o3 , ... ; and
let us denote the given series by a + S ; then

S<bx + bx
2 + bx

3 + ...
;

bx
and if x < 1 , we have S < -= .

1 — x

Thus when x is indefinitely diminished, S can be made as

small as we please ; hence the limit of the given series is a .

If the series consists of a finite number of terms, S is less

than in the case we have considered, hence a fortiori the pro-

position is true.

269. In the series

,3a + a,x + a
2
x + a

3
x + . .

.

,

by taking x small enough ive may make any term as large as we
please compared with the sum of all that follow it ; and by taking

x large enough we may make any term as large as we please

compared with the sum of all that precede it.

The ratio of the term a xn
to the sum of all that follow

n

it is

a xn a
or

an+1x
n+l +an+2x"

+ '2 + ...
' an+1x + au+2x*+..

When x is indefinitely small the denominator can be made
as small as we please ; that is, the fraction can be made as large

as we please.

Again, the ratio of the term a
n
xn

to the sum of all that

precede it is

a xn a
or

a ,cc
n l +a »x

n 2 +...' a ,y + a ay
2 +...'

n—l n — 2 n — lts n—2<J

where y = - .u x
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When x is indefinitely largo, y is indefinitely small ; hence,

as in the previous case, the fraction can be made as large as

we please.

270. The following particular form of the foregoing pro-

position is very useful.

In the expression

H-ia x + a ,x + + a.x + a
,

ii H — 1 1 »

consisting of a finite number of terms in descending powers of x,

by taking x small enough the last term a can be made as large

as we please compared with the sum of all the terms that precede

it, and by taking x large enough the first term ax* can be made
as large as we please compared with the sum of all that follow it.

Example 1. By taking n large enough we can make the first term of

n4 - 5/i3 -7/i + 9 as large as we please compared with the sum of all the other
terms ; that is, we may take the first term ?i

4 as the equivalent of the whole
expression, with an error as small as we please provided n be taken large

enough.

3.t3 — 2x'2 — 4
Example 2. Find the limit of =-=

—

:
— when (1) x is infinite : (2) x is

zero.

(1) In the numerator and denominator we may disregard all terms but
3a;3 3

the first ; hence the limit is ^-s , or ^ .

OXr O

-4 1
(2) When x is indefinitely small the limit is —--

, or - -

.

8 2

* / 1 + x
Example 3. Find the limit of ^ / -—- whenV 1 — x

x is zero.

Let P denote the value of the given expression ; by taking logarithms we
have

log P=i {log (1+ x) -log (1-x)}
X

^(l + ^' + '^+.-.V [Art. 226.]

Hence the limit of log P is 2, and therefore the value of the limit

required is e'
2

.
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VANISHING FRACTIONS.

271. Suppose it is required to find the limit of

x2 + ax — 2a2

x2 - a2

when x = a.

If we put x = a + h, then h will approach the value zero as x
approaches the value a.

Substituting a + h for x,

x2 + ax— 2a2 3ah + h2 3a + h

x2 -a2
=

2ah + h2
=

2a~+h'

and when h is indefinitely small the limit of this expression

. 3
is -.

a

There is however another way of regarding the question; for

x2 + ax - 2a2
(x - a) (x + 2a) x + 2a

x2 — a2
(x — a)(x + a) x + a '

and if we now put x = a the value of the expression is

^r , as before.
-j

2 . fi 2

If in the given expression
^

~— we pat x = a before
x — a

simplification it will be found that it assumes the form - , the

value of which is indeterminate ; also Ave see that it has this

form in consequence of the factor x -a appearing in both
numerator and denominator. Now we cannot divide by a zero

factor, but as long as x is not absolutely equal to a the factor

x - a may be removed, and we then find that the nearer x
approaches to the value «, the nearer does the value of the

3
fraction approximate to ^ , or in accordance with the definition of

Art. 266,

i , ! i . .
, n x t ax — Jia . o

when x = a, the limit of ^ .— is -

.

x~ -^a" 2
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272. If f(x) and
<f>

(x) are two functions of x, each of which

becomes equal to zero for some particular value a of x, the

fraction ^~ takes the form Ki and is called a Vanishing

<f)
(a) v

Fraction.

Example 1. If x= S, find the limit of

T3 -5:r2 + 73-3
.T
3 - x- — ox— '6

When x = 3, the expression reduces to the indeterminate form ^; but by

removing the factor x-3 from numerator and denominator, the fraction

becomes

^

~ 2x+1
, When x = S this reduces to -

, which is therefore the
x2 + 2x + 1 4

required limit.

Example 2. The fraction J'^-a-Jx + a
becomeg when %_a

x-a

To find its limit, multiply numerator and denominator by the surd con-

jugate to J'dx-a- Jx + a; the fraction then becomes

(Sx-a)-(x + a)
^ or

2
,

[x- a)(Jdx-a +Jx + a)' J'6x-a+ >Jx + a

whence by putting x= a we find that the limit is —j=

.

1 - 21x
Example 3. The fraction

1 _%x
becomes ^ when x=l.

To find its limit, put x = l + h and expand by the Binomial Theorem.

Thus the fraction

1 - (1 + fe)* _ V 3 9

l-(l + /0i l-(l+J*-^»F+-.)

1 1,
3
+

9
;< --

1 2
7

-5 +
25

/l
-

5
Now h= when *ael; hence the required limit is -

.

273. Sometimes the roots of an equation assume an in-

determinate form in consequence of some relation subsisting

between the coefficients of the equation.

H. H. A. lo
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For example, if ax + b = ex + d,

(a — c)x = d — b,

d-b
x =

a — c

But if c = a, then x becomes —j-— , or go ; that is, the root of

a simple equation is indefinitely great if the coefficient of x is

indefinitely small.

274. The solution of the equations

ax + by + c = 0, a'x + b'y + c = 0,

be' - b'e ca' — c'a

ab' — ab 1
ab'-a'b

'

If ab' — a'b = 0, then x and y are both infinite. In this case

— = — = m suppose ; by substituting for a', b\ the second

c
equation becomes ax + by + — = 0.

c-
If — is not equal to c, the two equations ax + by + c = and
m

c'

ax + b ii H = differ only in their absolute terms, and beingJ
Ml

J

inconsistent cannot be satisfied by any finite values of x and y.

If — is equal to c. we have -=-=-, and the two equations
m ^ a b c

are now identical.

Here, since be — b'e = and ca' — c'a — the values of x and y
Q

each assume the form - , and the solution is indeterminate. In

fact, in the present case we have really only one equation

involving two unknowns, and such an equation may be satisfied

by an unlimited number of values. [Art. 138.]

The reader who is acquainted with Analytical Geometry will

have no difficulty in interpreting these results in connection with

the geometry of the straight line.
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275. We shall now discuss some peculiarities which may
arise in the solution of a quadratic equation.

Let the equation be

ax2 + bx + c - 0.

If c = 0, then
ax2 + bx = 0;

whence x = 0, or— :

a

that is, one of the roots is zero and the other is finite.

If 6 = 0, the roots are equal in magnitude and opposite in

sign. [Art. 118.]

If a = 0, the equation reduces to bx + c = ; and it appears

that in this case the quadratic furnishes only one root,

namely — =- . But every quadratic equation has two roots, and in

order to discuss the value of the other root we proceed as follows.

Write — for x in the original equation and clear of fractions

;

*J

thus

cy2 + by + a = 0.

Now put a = 0, and we have

cy
2 + by = 0;

b c
the solution of which is y — 0, or — ; that is, x = oo, or — T .J c> ' b

Hence, in any quadratic equation one root will become infinite

if the coefficient ofx2 becomes zero.

This is the form in which the result will be most frequently

met with in other branches of higher Mathematics, but the

student should notice that it is merely a convenient abbreviation

of the following fuller statement

:

In the equation ax2 + bx + c = 0, if a is very small one root is

very large, and as a is indefinitely diminished this root becomes
indefinitely great. In this case the finite root approximates

to -y as its limit.
o

The cases in which more than one of the coefficients vanish

may be discussed in a similar manner.

15—2
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EXAMPLES. XX.

Find the limits of the following expressions,

(1) when #=oo, (2) when x= 0.

- (2s -3) (3 -5*) (3r?- I)*

7#2 -



)

CHAPTER XXI.

NVERGENCY AND DIVERGENCY OF SERIES.

076 Ax expression in which the successive terms are formed

^ ! lr law is called a series ; if the series terminate at
by some reguJ« ^ w ^e ^ number q{
some assigiMgl t^m lt: lb ca'iea a

B^J.
terms is unfimitfd, it is called an infinite series.

In the preset chapter we shall usually denote a series by

an expression c- °ue form

u
x
+ n

2
+ i/-

3
+ + u +

/
Suppose that we have a series consisting of w terms.

The sum of the series will be a function of n; if n increases

indetinitely, the sum either tends to become equal to a certain

finite fcmi*, or else it becomes infinitely great.

An infinite series is said to be convergent when the sum

of the first n terms cannot numerically exceed some finite

quantity however great n may be.

An infinite series is said to be divergent when the sum of

the first n terms can be made numerically greater than any finite

quantity by taking n sufficiently great.

978 If we can find the sum of the first n terms of a given

series we may ascertain whether it is convergent or divergent

W examining whether the series remains finite, or becomes in-

finite, when n is made indefinitely great.

For example, the sum of the first n terms of the series

.
1-*"

1 + x + x2 + x* + ... is . _ a
.

•
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If x is numerically less than 1, the sum appro. ; -, the
finite limit j—- ,

and the series is therefore converge,^!

If x is numerically greater than 1, the sum of t„ first

n terms is —y ,
and by taking n sufficiently great, tk can

cUve?ge
d

n
e

t.

greater ""* ™Y &n*e l""*^ thus «» *>•» is

serie'srdi^ent
Um

* ^ ** "^ * "» *"d ***» ^
If x= - 1, the series becomes

1-1+1-1+1 -1+
The sum of an even number of terms is I ,;L the sumof an odd number of terms is 1 • and thiw +\L •„

T

between the values and 1. Thi t,feXAc ^™
1which may be called o-iBo^ orA^c^

5 ^^
f /^' ?i

here are
,
many 0ases in which we'haic ,„. hodof finding the. sum of the first n terms of a series. Wep"

therefore to investigate rules by which we can test the cTtS:T °f a^ «*• -*Hout effecting its

280. 4n tra/mfe series w* taAicA *Ae ferw are alternately

Let the series be denoted by

M
,
-% + % - u, + u - M +

where w1 >^>^a >w,> M ....* o 4 5

for,™
6 giVe

" SerfeS may be Written in each of the following

K-«,)+(«,-«0 +(».-«,) + ^
».-K-«J-(«4-«,)-K-«r)- (

2).

From (1) we see that the sum of any number of terms isa positive quantity; and from (2) that the sum of any nnmberof terms is less than «, ; hence the series is convergent.
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281. For example, the series

, 11111
1 f- 1 h

2 3 4 5 6

is convergent. By putting x -• 1 in Art. 223, we see that its

sum is loge 2.

Again, in the series

23 4 _5 6 _7
T~2

+ 3"4 +
5
~6 + '

each term is numerically less than the preceding term, and the

series is therefore convergent. But the given series is the sum of

i
11111 m

1 -2 + 3-4 + 5"6 +
' (1) '

and 1-1+1-1 + 1-1 + , (2).

Now (1) is equal to loge 2, and (2) is equal to or 1 according'

as the number of terms is even or odd. Hence the given series

is convergent, and its sum continually approximates towards

log,, 2 if an even number of terms is taken, and towards 1 + log
8
2

if an odd number is taken.

282. An infinite seizes in which all the terms are of the same

sign is divergent \f each term is greater than some finite quantity

however small.

For if each term is greater than some finite quantity a,

the sum of the first n terms is greater than na ; and this, by
taking n sufficiently great, can be made to exceed any finite

quantity.

283. Before proceeding to investigate further tests of con-

vergency and divergency, we shall lay down two important

principles, which may almost be regarded as axioms.

I. If a series is convergent it will remain convergent, and
if divergent it will remain divergent, when we add or remove
any finite number of its terms ; for the sum of these terms is

a finite quantity.

II. If a series in which all the terms are positive is con-

vergent, then the series is convergent when some or all of the

terms are negative ; for the sum is clearly greatest when all

the terms have the same sign.

We shall suppose that all the terms are positive, unless the

contrary is stated.
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284. An infinite series is convergent iffrom and after some

fixed term the ratio of each term to the preceding term is numerically

less than some quantity zuhich is itself numerically less than unity.

Let the series beginning from the fixed term be denoted by

u, + u
c>
+ u^ + u^ +12 3 4

U U
1

UA
and let — < r, — < r, -* < r

U
:

U
2

U
s

where r < 1.

Then u, +u
r,
+ u+uA +12 3 4

/_. u
9

u. ua n u u
1

V ^ <fa
u

x
u

3
u

2 Ul 1

< it, (1 + r + r
2 + r3 + )

;

tliat is, <
~

1

, since r < 1.
1 - r

u.

Hence the given series is convergent.

285. In the enunciation of the preceding article the student

should notice the significance of the words " from and after a

fixed term."

Consider the

1
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286. An infinite series in which all the terms are of the same
sign is diverge)it iffrom and after some fixed term the ratio of ea<-li

term to the 'preceding term is greater than unify, or equal to unify.

Let the fixed term be denoted by t* . If the ratio is equal to

unity, each of the succeeding terms is equal to u , and the sum
of n terms is equal to nu

l ; hence the series is divergent.

If the ratio is greater than unity, each of the terms after the

fixed term is greater than u
x , and the sum of n terms is greater

than nu
}

; hence the series is divergent.

287. In the practical application of these tests, to avoid

having to ascertain the particular term after which each term is

greater or less than the preceding term, it is convenient to find

the limit of — - when n is indefinitely increased; let this limit

n—\

be denoted by A.

If X< 1, the series is convergent. [Art. 284.]

If \> 1, the series is divergent. [Art. 286.]

If X=l, the series may be either convergent or divergent,

and a further test will be required ; for it may happen that

—— < 1 but continually approaching to 1 as its limit ivhen n is

n— 1
m

indefinitely increased. In this case we cannot name any finite

quantity r which is itself less than 1 and yet greater than X.

u
Hence the test of Art. 284 fails. If, however, —— > 1 but con-

u
H — I

tinually approaching to 1 as its limit, the series is divergent by
Art. 286.

We shall use " Liin —— " as an abbreviation of the words
u

,n — 1

U
"the limit of —— when n is infinite."

u .

n — 1

Example 1. Find whether the series whose nlh term is — -
.,
— is con-

1
di-

vergent or divergent.

„ ?/n (n + l)a:n ru^1 (n + l)(n-l)-

('„_! n2 {h - 1)
2 n*

him —

—

—x\
"n I
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hence if x < 1 the series is convergent

;

if x> 1 the series is divergent.

u
If x= l, then Lim ——=1, and a further test is required.

Example 2. Is the series

l2 + 22x + 32x2 + 4?xs+
convergent or divergent?

_ T . un n2 xn
~l

Here Lim —7jL =Lim-. —.
„ 9=x.un-i (n-l)-xn 2

Hence if x < 1 the series is convergent

;

if x> 1 the series is divergent.

If x= 1 the series becomes l 2 + 22 + 32 + 42 + . .
.

, and is obviously divergent.

Example 3. In the series

a+(a + d)r+{a + 2d)r2 +... + (a + n-1 . d)rn
~ 1 + ...,

, . wn T . a -t- (n - 1) d
Lim ——=Lim——. -^--.r= r;

»*-i a + (n-2)d

thus if r< 1 the series is convergent, and the sum is finite. [See Art. 60, Cor.]

288. If there are two infinite series in each of which all the

terms are ])Ositive, and if the ratio of the corresponding terms in

the two series is always finite, the two series are both convergent,

or both divergent.

Let the two infinite series be denoted by

u
x
+ u

a
+ ua

+ w
4
+ ,

and v, + v, + v, + v. +12 3 4

The value of the fraction

u
i
+ u

,
+ ua^ +n

n

lies between the greatest and least of the fractions

\ -*, -», [Art. 14.1

and is therefore a, finite quantity, L say

;

Hence if one series is finite in value, so is the other; if one
series is infinite in value, so is the other; which proves the

proposition.
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289. The application of this principle is very important, for
by means of it we can compare a given series with an auxiliary
series whose convergency or divergency has been already esta-

blished. The series discussed in the next article will frequently
be found useful as an auxiliary series.

290. The infinite series1111
y T

2P 3P 4.1'

is always divergent except when p is positive and greater than 1.

Case I. Let;? > 1.

The first term is 1 ; the next two terms together are less than
2 . 4
j—; the following four terms together are less than-—; the fol-
Z 4

lowing eight terms together are less than — ; and so on. Hence
o

2 4 8
the series is less than I + t^+th+ttt, +•••;

2P 4' o 1

that is, less than a geometrical progression whose common ratio

2
~j is less than 1, since p > 1 ; hence the series is convergent.

Case II. Let_p=l.

The series now becomes 1 + ^ + -^ + - + =;+ ...

2 3 4 5

2 1
The third and fourth terms together are greater than - or

^ ;
t —

4 1
the following four terms together are greater thau ^ or -

; the
o 2

8 1
following eight terms together are greater than — or -

; and so

on. Hence the series is greater than1111
2
+

2
+

2
+

2
+ '"'

and is therefore divergent. [Art. 2^6.]

Case III. Let p<\, or negative.

Each term is now greater than the corresponding term in

Case II., therefore the series is divergent.

Hence the series is always divergent except in the case when
p is positive and greater than unity.
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Example. Prove that the series

2 3 4 n+1

is divergent.

Compare the given series with 1 + « + « + v "^

—

•"••••

Thus if «*n and vn denote the nth terms of the given series and the

auxiliary series respectively, we have

un _n+ l . 1 _ w + 1

i'n n2
' re ?i

7/

hence Zi-m, — =1, and therefore the two series are both convergent or both

divergent. But the auxiliary series is divergent, therefore also the given

series is divergent.

This completes the solution of Example 1. Art. 287.

291. In the application of Art. 288 it is necessary that the

limit of — should be finite ; this will be the case if we find our

auxiliary series in the following way :

Take u , the nth term of the given series and retain only the

highest powers of n. Denote the result by v
n ) then the limit of

u
- is finite by Art. 270, and v may be taken as the 7i

th term of

the auxiliary series.

3/2n2 - 1
Example 1. Shew that the series whose nth term is ,, = isr

Z/S?vi + 2n+5
divergent.

As n increases, un approximates to the value

l/w '
or

4/3 * i

n12

1 u 3/2
Hence, if v„=-r ,we have Lim—= ^r, which is a finite quantity;

~ vn v/3
n1 -

1
therefore the series whose nth term is — may be taken as the auxiliary

series. But this series is divergent [Art. 290] ; therefore the given series is

divergent.
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Example 2. Find whether the series in which

vn = ^/;<
:} +l -n

is convergent or divergent.

Here "»=« \\/ * + tf
~
*J

//

(
1 + »-»+ -;" 1

)

~3n2
9><

5 +

If we take vn= = , we have

vM 3 9n'JN

Luti — =x.
v„ 3n

But the auxiliary series

JL JL Jl l
P +

22
+

3
2+ '" n

1+ " -

is convergent, therefore the given series is convergent.

292. To shew that the expansion of (1 + x)n by the Binomial

T/teorem is convergent when x < 1.

Let u
r , ur+l

represent the ?*th and (?-+l)th terms of the ex-

pansion ; then
u . , n-r+1
w r

r

When r>?6+l, this ratio is negative; that is, from this

point the terms are alternately positive and negative when x
is positive, and always of the same sign when x is negative.

7/

Now when r is infinite, Lim —— = x numerically ; therefore

since x < 1 the series is convergent if all the terms are of the

same sign; and therefore a fortiori it is convergent when some of

the terms are positive and some negative. [Art. 283.]

293. To shew that the expansio?i of ax in ascending powers
of x is convergent for every value of x.

W # 1°#« ^ 1 1 • 7- •
U 11 1

Here —*- = —-— ; and therefore Lim —=- < 1 whatever be
«„_, n-1 «*__,

the value of x; hence tlie series is convergent.



238 HIGHER ALGEBRA.

294. To shew that the expansion of log (1 + x) in ascending

powers of x is convergent when x is numerically less than 1.

-i
ni n't I

Here the numerical value of—— = x. which in the limit
u

,
n

is equal to x \ hence the series is convergent when x is less than 1.

If a5 = l, the series becomes 1— k + 77-t+--> an^ is con"

2 3 4

vergent. [Art. 280.]

If x~ — 1, the series becomes — 1 — -— q
_ t" •••> an(^ *s

a O 4:

divergent. [Art. 290.] This shews that the logarithm of zero is

infinite and negative, as is otherwise evident from the equation

e-°°=0.

295. The results of the two following examples are important,

and will be required in the course of the present chapter.

\q<j x
Example 1. Find the limit of —2-- when x is infinite.

Put x= ev; then

logs y y
X ~ eV y* yi

i - y y'2

y \2
^ 3

+ "

also when x is infinite y is infinite ; hence the value of the fraction is zero.

Example 2. Shew that when n is infinite the limit of nxn= 0, when x<l.

Let x=- , so that y>l;
if

also let y
n =z, so that n\ogy = logz; then

fu^=—= i ^^ =— logz
.

y
n z'logy logy' z

Now when n is infinite z is infinite, and —s_ = 0; also logy is finite;
z

therefore Lim nxn= 0.

296. It is sometimes necessary to determine whether the

product of an infinite number of factors is finite or not.

Suppose the product to consist of n factors and to be denoted by
uMAia io

;

then if as n increases indefinitely u <<1, the product will ulti-

mately be zero, and if u
n
> 1 the product will be infinite ; hence in

order that the product may be finite, u- must tend to the limit 1

.
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Writing 1 + v
n
for u

n , the product becomes

(l+*
1
)(l+*,)(l+*

8) (l+O-

Denote the product by P and take logarithms j then

logP = log(l+v
1
) + log(l+v8)

+...+ log(l + vJ (1),

and in order that tlie product may be finite this series must be
convergent.

Choose as an auxiliary series

v,+v
2
+ v

3
+ +v

n (2).

/ _1 .

r . log(l + t;) _. r- 2** + "

Now Lim-2-l ^ = Lim\ /==1,
v \ v I

n n

since the limit of v is when the limit of u is 1

.

n n

Hence if (2) is convergent, (1) is convergent, and the given

product finite.

Example. Shew that the limit, when n is infinite, of

13 3 5 5 7 2n-l 2n + l

2'

2

'4*1*6' 6 ~JT~'~2ir
is finite.

The product consists of 2n factors; denoting the successive pairs by
Uj, m2 , Ug,... and the product by P, we have

P= u
x
v

2
u
3 un>

2n-l 2«+l , 1
where **n=—s— • -5— = 1 - t-?;2m 2n 4«-

but logP= logM
1 + log«2+ logM3 + ...+logMn (1),

and we have to shew that this series is finite.

Now log«n= log (l -^)=-~
3̂2/i-1

'•'

therefore as in Ex. 2, Art. 291 the series is convergent, and the given product
is finite.

297. In mathematical investigations infinite series occur so
frequently that the necessity of determining their convergency or
divergency is very important ; and unless we take care that the
series we use are convergent, we may be led to absurd conclusions.

[See Art. 183.]
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For example, if we expand (l—x)~ 2 by the Binomial Theorem,
we find

( 1 - a;)-
2 = 1 + 2x + 3ar + 4a3 +

But if we obtain the sum of n terms of this series as ex-

plained in Art. 60, it appears that

in O 9 n-l * ^ ^^
1 + 2.*; + 3ar + ... + nx = t= ra — = :

(1 - x) 1 - x

whence

I +'2x+ 3x~ + ... + nx 4- 7z ^ +
(l-x) 2 -'—'— - (1-a?)9 1-*

i

By making n infinite, we see that -z -
a can only be re-J ° (l-x) 2

garded as the true equivalent of the infinite series

1 + 2x + 3x2 + ix3 +

x nx
when -rz ri + =— vanishes.

(1 -x)~ l-x

If n is infinite, this quantity becomes infinite when x=l,
or aj>l, and diminishes indefinitely when a,*<l, [Art. 295], so

that it is only when x < 1 that we can assert that

\
Ta =* 1 + 2x + 3x2 + 4#3 + to inf.

j

and we should be led to erroneous conclusions if we were to use

the expansion of (1 - x)~ 2 by the Binomial Theorem as if it were
true for all values of x. In other words, we can introduce the

infinite series 1 + 2x + 3x2 + ... into our reasoning without error

if the series is convergent, but we cannot do so when the series

is divergent.

The difficulties of divergent series have compelled a distinction

to be made between a series and its algebraical equivalent. For
example, if we divide 1 by (1 - x)

2
, we can always obtain as

many terms as we please of the series

l + 2a;+3£2
+4a;3 +

whatever x may be, and so in a certain sense -p. ^ niay be

called its algebraical equivalent ; yet, as we have seen, the equi-

valence does not really exist except when the series is con-
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vergent. It is therefore more appropriate to speak of —

—

(l — X)
as the generating function of the series

1 +2a,- + 3a2 +

being that function which Avhen developed by ordinary alge-

braical rules will give the series in question.

The use of the term generating function will be more fully

explained in the chapter on Recurring Series.

EXAMPLES. XXI. a.

Find whether the following series are convergent or divergent.:

. Ill 1
1 #

1
_ 4.

x x+ a x-^-2a .v+ 3a

x and a being positive quantities.

1 1 1 1

1.2
+
273

+
371

+
475

+

_1_
1 1 1

6
- xy (*+i)(y+i)

4>+a)(y+*) (*+3)(y+3)
+ '

x and y being positive quantities.

x x2 x3 x*
4 1 1 1 h .1.2^2.3^3.4^4.5

/>» /)»2 o»o o***tf \Mj \Mj %A/

T72
+
3T4

+
576

+
778

+

n , 2 2 32 42

6 - 1+
I+I+I+

7 -

\/l + \/i + \/f + \/1+

8. 1 + toe + bx2 + la? + 9af* +

2
__ 1 i. Ay

*
"i^
+

2/'
+

3p
+

4p
+

ia 1 +
2
+

5
+
Ib
+ - +

,^TT
+

3 ., 8 , 15 n2 -\
11. x + - x2+ -x*+ —xA+ . . . + -.,—-.. xn +

5 10 17 nl+

1

H. H. A. 16
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-.n -, 2 6 , 14 , 2'l -2
12. l +

g
*+5*»

+I
^P + „.+—*p-i+

1 — — —

14. 2.r+— + -- + . ..+ -,— +
8 2 7 ?t

3

1C /22 2\-! /33 3\-2 /44 4\-3

15
' (p-l) + (2-3 -2) +«= ="

/4_
4 _4\

\3 4 3^

22 33 44

16. 1 + -- + - + - + - +

17. Test the series whose general terms are

(1) Jn*+l-n. (2) jtF+l- Jnt-^i.

18. Test the series

/1N 1 1 1 1

.r A+l a+2 x+3

/on 11 1 1 1

(2) -+ r-+——-+ 5+—T5+
A- # -1 A+l ^ -2 a + 2

x being a positive fraction.

19. Shew that the series

2" 3^ 4"
1+
I
+
I
+
E
+

is convergent for all values of p.

20. Shew that the infinite series

u
x + 2i2 + u

3 + u± +

is convergent or divergent according as Lim^fun iti <1, or >1.

21. Shew that the product

2 2 4 4 6 2ti-2 2tt-2 2n
• 1 * 3' 3' 5 ' 5 271-3' 2»-l"S^Ti

is finite when n is infinite.

22. Shew that when x=\, no term in the expansion of (1 +#)" is
infinite, except when n is negative and numerically greater than unity.
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*298. The tests of convergency and divenrencV wp i.™sriven m Art* 9x7 ogi 11 «» . & cxltv we nave

proved in the next article enables n/^T of^ bST^
I .1 1 1

l»
+

2»
+

3?
+ ••• +

,7
+ ---

venter
6

"
ddit£0U,a ** wUch ^ S01»eti»'es "» fa-d con-

tergent when the v-servs is convergent if after some particular term— <^ ;
onrf Me „*»*» «,<« J, AWjori «,/t(!re the v-sertes is

divergent if —5- > _-n
Un-i V.,

'

Let us suppose that Wj and », are the particular terms.

Case I. Let * < Ei &<! . then
2

w, + w
fl
+ u

3
+

= 2t

that is,

V w
i **

2
w, y

< — (v. -f -y + v + )

Hence, if the ^-series is^convergent the w-series is also con-vergent.

Case II. Let -2 > 3» ^^
**, v, tt, « ; then

i a 2

M
i
+ ^9 + U, +

V V, V
a

27, J

16—2
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that is, > — (v
l
+ v

2
+ v

3
+ ...).

Hence, if the ^-series is divergent the it-series is also di-

vergent.

*300. We have seen in Art. 287 that a series is convergent

or divergent according as the limit of the ratio of the ?i
th term

to the 'preceding term is less than 1, or greater than 1. In the

remainder of the chapter we shall find it more convenient to use

this test in the equivalent form :

A series is convergent or divergent according as the limit of

the ratio of the nth term to the succeeding term is greater than 1,

or less than 1 ; that is, according as Lim —— > 1, or < 1.

Similarly the theorem of the preceding article may be

enunciated

:

The w-series will be convergent when the v-series is convergent

u v
provided that Lim —— > Lim—— ; and the it-series will be di-

vergent when the v-series is divergent provided that

Lim ^^ Lim ^.

*301. The series whose general term is un is convergent or di-

vergent according as Lim \ n ( —-— 1 \ >> 1, or < 1.

Let us compare the given series with the auxiliary series

whose general term v is — .

"When p > 1 the auxiliary series is convergent, and in this

case the given series is convergent if

u
n

(n+iy
U

n + l
n?

, or (l + iy.

thatis,if JS B. > l +g + -J
> CP-lV+ „

un+i n 2n~

/ u ,\ p (p-l)
nKCr lrp+ ^ +

that is, if Lim \n (
—- 1 ) 1 >)>.

I Wh J)
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But the auxiliary series is convergent if y; is greater than 1

by a Unite quantity however small ; hence the first part of the
proposition is established.

When p< 1 the auxiliary series is divergent, and by proceed-
ing as before we may prove the second part of the proposition.

Example. Find whether the series

a; 1 ^ L3 x= 1.3 .5 x[

l
+ 2* 3

+ 2.4* 5
+ 2~i.d'T + '"

is convergent or divergent.

it 1
Here Lim —— =-; hence if x<l the series is convergent, and if x>l

un+l x"

the series is divergent.

u
If x= 1, Lim —— = 1. In this case

un+l

and

_ 1 - 3 - 5 (2w- 3) 1
M"~ 2 . 4 . 6 ...... (2n - 2) ' 2~/T=T

'

wn 2n(2n+l)
un+1 (2n - 1) (2n - 1)

'

'• "Urn J" (2n-l)2 '

hence when a; = 1 the series is convergent.

*302. T/ie series whose general term is un is convergent or di-

vergent, according as Lim ( n log —- j
> 1, or < 1.

Let us compare the given series with the series whose general

term is —-

.

n l

When p > 1 the auxiliary series is convergent, and in this

case the given series is convergent if

u /„ lv
-s- >
n+ I

1 + ij
;

[Art. 300.]

that is, if log —— > p log (1 h ) :

! ** P 7J
or if log — " > ' ^-5 +

'u ., « 2n2 " 3

71+ 1
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that is, if Lim In log —— ) >p.

Hence the first part of the proposition is established.

When p < 1 we proceed in a similar manner ; in this case the

auxiliary series is divergent.

Example. Find whether the series

22z2 3sx3 4*r4 55x5

is convergent or divergent.

„ un nnxn (n+ l)
Here —*- = — '- v

.

n+l /pW+1 7^

wn+l |n_ ' [n + l (n+l)** A lyV
H)'

.-. Lim 3l = -1

.

[Art. 220 Cor.l.
wn+1 <?*

Hence if a?<- the series is convergent, if #>- the series is divergent.

If:r=-,then ^St—
e un+l

•.log -n—= loge-wlog( 1 + -
)

_1 J_
~2n 3n8+ " '

. un 1 1

. Lim [ n log —— 1 = -

:

hence when x = - the series is divergent.

*303. If Lim -^- = 1, and also Liminf-^- - l)) = 1, the
wn+1 ) \un+ i J)

tests given in Arts. 300, 301 are not applicable.

To discover a further test we shall make use of the auxiliary

series whose general term is —- r- . In order to establish
n (log n) p

the convergency or divergency of this series we need the theorem
proved in the next article.



CONVERGENCY AND DIVERGENCY OF SERIES. 247

*304. If $ (n) is positivefor all positive integral values of n
and continually diminishes as n increases, and if a be any posit ive

integer, then the two infinite series

</>(l) + <£(2) + </>(3) + ... + </>(n) + ...,

and a<£ (a) + a
2
<£(a

2

) + a3
</> (a

3

) + . . . + an

<£ (a
n
) + . .

.

,

are both convergent, or both divergent.

In the first series let us consider the terms

</>(«*+ 1), <f>(a
k
+ 2), <f>(a

k + S), <M«
i+1

) 0)

beginning with the term which follows </>(«*).

The number of these terms is ak+l - ak
, or ak(a- 1), and each

of them is greater than <£(a*
+1

); hence their sum is greater than
1

ak(a- 1) <f>(a
k+1

); that is, greater than x ak+l cf> (a
k+1

).

By giving to k in succession the values 0, 1, 2, 3,... we have

4>(2) + 4>(3)-f<M4) + ++W>^x«*W;
Co

<]>(a + 1) + <£(« + 2) + <f>(a+ 3)+ + <£(«*)> x a2
<f>(a

2

) ;

therefore, by addition, $! — <£(1) > S
2 ,

ct

where £, , S
2
denote the sums of the first and second series respec-

tively; therefore if the second series is divergent so also is the

first.

Again, each term of (1) is less than <£(«*), and therefore the

sum of the series is less than (a— 1) x ak
<j>(a

k

).

By giving to k in succession the values 0, 1, 2, 3... we have

<j>{2) + <£(3) + 4>(4) + + <£(«) < (a- 1) x <£(1);

<f>(a + I) + <f>(a + 2) + <f>(a + 3) + +<f>(a
2)<(a- 1) x a<f>(a);

therefore, by addition

4-+(l)<(«-l){4 + *(l)};

hence if the second series is convergent so also is the first.»'

Note. To obtain the general term of the second series we take </>(») the

general term of the first series, write an instead of n and multiply by a n
.
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*305. The series whose general term is —^ r— is convergent
n(logn) p u

if p > 1, and divergent if p = 1, or p < 1.

By the preceding article the series will be convergent or

divergent for the same values of p as the series whose general

term is

1 1 11
ft" \l c\y (\V X

a"(loga") p ' (n\oga) p ' (log a)' np
'

The constant factor 7= r_ is common to every term ; there-

fore the given series will be convergent or divergent for the same

values of p as the series whose general term is —- . Hence the

required result follows. [Art. 290.]

*306. The series whose general term is un is convergent or di-

vergent according as Lim \\\ (
—-— 1 ]

— 1 > log n > 1, or < 1.

Let us compare the given series with the series whose general

term is — -.
n (logny

When j) > 1 the auxiliary series is convergent, and in this

case the given series is convergent by Art. 299, if

u
n

(w + l){log(n+l)}'

M,+i n {log n) v

Now when n is very large,

log (n + l) = log n + log
(
1 + -

J
= log n + -

, nearly;

Hence the condition (1) becomes

(!)•

u . , V nj V n log n ,n + l N ' N O '

thatis, ^>(l + l)(l+P
uH+l \ nj \ nlogn log n) '

u i 1 P
that is, —- > 1 + - +

u ., ?i wlogw
n + l o
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1 ) > 1 + .
P

;

l0g?4

or <n CSr 1)- 1
}
10*"^

Hence the first part of the proposition is established. The
second part may be proved in the manner indicated in Art. 301.

Example. Is the series

22 22 .4 2 22 .42 .62

^32 ^3 2 .52 ^32 .52 .72

convergent or divergent?

Here A. = *£*. 1 + I +
*

(1).

ti
.-. Lt«i —*- =1, and we proceed to the next test.

Fromfl), »fe-l)=l+5 <
2>-

.-. Lim In ( -1- -1)1=1, and we pass to the next test.

*-» ffe- 1)- 1
}
108^'^

•••^"[ffe-
1)- 1

}
108 "]30'

since Lt/u —^— = [Art. 295]; hence the given series is divergent.
n

*307. We have shewn in Art. 183 that the use of divergent

series in mathematical reasoning may lead to erroneous results.

But even when the infinite series are convergent it is necessary to

exercise caution in using them.

For instance, the series

- JC %)C Ou Jb

+
4/2~J/3

+
474~^5

+ '"

is convergent when x=l. [Art. 280.] But if we multiply the
series by itself, the coefficient of x2n

in the product is

1 1 1
+

1
+

1
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Denote this by a
2n ; then since

1 1 J^

a„ >—;— , and is therefore infinite when n is infinite.
2" Jn '

If x=l, the product becomes

%-a
x
+a

3
- a

B f ... + a
gJ1
- a2n+1 + a

2>I+a
- ...,

and since the terms ol, a .,. a
ffl

._ ... are infinite, the series has
2h' 2/i+ 1' 2;i+2 '

no arithmetical meaning.

This leads us to enquire under what conditions the product

of two infinite convergent series is also convergent.

*308. Let us denote the two infinite series

a + a
x

x 4- a
2
x + a

3
x + . . . + a

2
x + . .

.,

b
Q
+ b^x + b

2
x2 + b

3
x3 + . . . + b

2n
x2n + . .

.

by A and B respectively.

If we multiply these series together we obtain a result of

the form
a<A + (

aA + a(A) x +
(
aJ>o + a

fii + afiz) x
2

+ ...

Suppose this series to be continued to infinity and let us

denote it by G ; then we have to examine under what conditions

C may be regarded as the true arithmetical equivalent of the

product AB.

First suppose that all the terms in A and B are positive.

Let A„ , B„ , C„ denote the series formed by taking the first
2/1

»

2«

'

2« JO
2w + 1 terms of A, B, C respectively.

If we multiply together the two series A 2ai B2ni the coefficient

of each power of x in their product is equal to the coefficient of

the like power of x in C as far as the term x2
" ; but in A

2n
B,

n

there are terms containing powers of x higher than x2n
, whilst

x2n
is the highest power of x in C

0n ; hence

^o B* > C
2 .

2/i 2/1 2/1

If we form the product A B the last term is a b x2n
; but

C
2n

includes all the terms in the product and some other terms
besides ; hence

C. >A B .

%n ii ii
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Thus C is intermediate in value between A B and A B ,

T
2 " • 1 /.

B B 2/» 2/i'

whatever be the value or n.

Let -4 and B be convergent series
;
put

A = A-X, B =B- Y.

where X and Y are the remainders after n terms of the series

have been taken; then when n is infinite X and Y are both
indefinitely small.

.-. A
n
B

H
= (A-X)(B-Y) = AB-BX-AY+XY'

}

therefore the limit of A B is AB. since A and B are botli finite.

Similarly, the limit of A
2n
B„

a
is AB.

Therefore C which is the limit of C
2n

must be equal to AB
since it lies between the limits of A B and A n B„ .

B B 2« 2;«

Next suppose the terms in A and B are not all of the same
sign.

In this case the inequalities A n Bn > C„ > A B are notI 2n 2b 2b b b

necessarily true, and we cannot reason as in the former case.

Let us denote the aggregates of the positive terms in the

two series by P
t
P' respectively, and the aggregates of the

negative terms by iV, N'; so that

A = P-N, B^F-N'.

Then if each of the expressions P, P\ JV, N' represents a con-

vergent series, the equation

AB = PF- NF- PN' + NN\
has a meaning perfectly intelligible, for each of the expressions

PP\ NF, PN\ NN' is a convergent series, by the former part
of the proposition ; and thus the product of the two series A and
B is a convergent series.

Hence the product of two series will be convergent provided
that the sum of all the terms of the same sign in each is a con-

vergent series.

But if each of the expressions P, N
y

P', N' represents a
divergent series (as in the preceding article, where also F = P
and N' = N), then all the expressions PF, NF, PN\ NN' are
divergent series. When this is the case, a careful investiga-

tion is necessary in each particular example in order to ascertain

whether the product is convergent or not.
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^EXAMPLES. XXI. b.

Find whether the following series are convergent or divergent

1 .r
2 1.3.5 #* 1.3.5.7.9 £«

1. 1+ 2*4 + 2.4.6'8 + 2.4.6.8.10' 12
+

3 3.6
2

3.6.9 ^ 3.6.9.12
2. 1 + ^+7. 10^ +7.10.13* +

7.10.13.16
A +

o 2
22

a 2 2 .42

G
22

. 42
. 62

o

3. ^+374^+3.4.5.6^+3.4.5.6.7.8*°+—
2# 32

.?
2 43^ 54^

4 n 1 1 1 h*'
|2 ^ |3 ^ |4 ,5

1 12 13 14

l 2 1 2 .32 1 2 .32 .5 2
2

* 22
+

22 .42
'r +

22 .42 .62^ + *

7 i ,

g(l-a)
, ( l + a)«(l-g)(2- g)

'• X "T
12 ~

"*"

l 2 . 22

a being a proper fraction.

(2 + q)(l+a)q(l-a)(2-,a)(3-q)
I 2

. 22
. 32

a+x (a + 2#)2 (a + 3ai)3

8
* IT*—12~ + "13"" +

9 . 1+^+^MM,
1 . y 1 . Z . y (y+1)

a(a+ l)(a+ 2)/30+l)(/3+ 2)

1.2.3.y(y+l)(y+ 2) '
"*"

10. x1 (log 2)*+ a?
3 (log 3)i+ a?

4 (log 4)*+

11. i +a+__^+—_-^ +

12
-

If^;
='^r^w^S^' where * is a positive

\

integer, shew that the series w
1
+ ?^

2+ «3+ is convergent if

^ _ a _ i js positive, and divergent if A - a - 1 is negative or zero



CHAPTER XXII.

Undetermined Coefficients.

309. In Art. 230 of the Elementary Algebra, it Avas proved
that if any rational integral function of x vanishes when x = a,

it is divisible by x — a. [See also Art. 514. Cor.]

Let p xn + p x
xn "

' +pjf
" 2 + +pn

be a rational integral function of x of n dimensions, which
vanishes when x is equal to each of the unequal quantities

«!> «*, %i «„•

Denote the function hy f(x); tlien since f(x) is divisible

by x - a
l

, we have

f(x)=:(x-a
l)(p x"-

i + ),

the quotient being of n — 1 dimensions.

Similarly, since f(x) is divisible by x -a,
7 , we have

2W
n~ X + = (x-aj-(pjf- +

)«

the quotient being of n — 2 dimensions; and

Proceeding in this way, we shall finally obtain after n di-

visions

f(x) =p (x - a) (x-a}(x-a
a)

(x- a
H).

310. If a rational integral function of\\ dimensions vanishes

for more than n values of the variable, the coefficient of each power

of the variable must be zero.

Let the function be denoted hyf(x), where

f(x) !>x" +p
)

x"~
x +p,c'-' + +pn ;
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and suppose tha,tf(x) vanishes when x is equal to each of the

unequal values a
lt

a2i a
3

a
n ; then

f(x) =Po (
x - ai) (

x ~ a
2) (

x ~ °0 (
x ~ a,)-

Let c be another value of x which makes f(x) vanish ; then

sincef(c) = 0, we have

Po (
c ~ a

i)
(°

~

a
*) (

G ~ a
s) (c-«J = 0;

and therefore p = 0, since, by hypothesis, none of the other

factors is equal to zero. Hencef (x) reduces to

2\x
n - x +p2

xn- 2
+ 2)3X

"~3+ +Pn -

By hypothesis this expression vanishes for more than n values

of x, and therefore p x
= 0.

In a similar manner we may shew that each of the coefficients

2>o, P3 , Vn must be equal to zero.

This result may also be enunciated as follows

:

If a rational integral function of n dimensions vanishes for
more than n values of the variable, it must vanish for every value

of the variable.

Cor. If the function f(x) vanishes for more than n values

of x, the equation f (x) — has more than n roots.

Hence also, if an equation of n dimensions has more than n
roots it is an identity.

Example. Prove that

(x - b) (x - c) (x - c) (x - a) (x - a) (x — b) _ 1

(a -b) (a- c) {b -c) (6 - a) (c-a) (c-b)~

This equation is of tivo dimensions, and it is evidently satisfied by each
of the three values a, 6, c ; hence it is an identity.

311. If two rational integral functions of n dimensions are

equal for more than n values of the variable, they are equal for
every value of the variable.

Suppose that the two functions

2) x
n +p

1
xn- 1

+2>
2
x"-

2 + +pH ,

qo
xn + q^"- 1 + q2

x- 2 + + qmt

are equal for more than n values of x ; then the expression

U>» - %) x'1

+ (Pi - ?i) x
"~ l

+ (p» - ad x
"~ 2

+ + (p* - ?.)
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vanishes for more than n values of x; and therefore, by the

preceding article,

that is,

2\ = %> Pi=9li> Pi^Vv l>n = <ln >

*

Hence the two expressions are identical, and therefore are

equal for every value of the variable. Thus

if two rational integral functions are identically equal, we may
equate the coefficients of the like powers of the variable.

This is the principle we assumed in the Elementary Algebra,

Art. 227.

Cor. This proposition still holds if one of the functions is

of lower dimensions than the other. For instance, if

p x" + pff~
l + pjf~ 2 + pjf~* + +pn

= q2
xn~ 2 + q3

xn~ 3 + +qn ,

we have only to suppose that in the above investigation qo
= 0,

q = 0, and then Ave obtain

^o=°> Pi=°> P2=vs > Ps=q3 > p,, = q»-

312. The theorem of the preceding article is usually referred

to as the Principle of Undetermined Coefficients. The application

of this principle is illustrated in the following examples.

Example, 1. Find the sum of the series

1.2 + 2.3 + 3.4+ +n(n+l).

Assume that

1.2 + 2. 3 + 3. 4 + ... + n(n + l)=A +Bn+Cn2 + Dn3+ Eni
+...,

where A, B, C, D, E,... are quantities independent of n, whose values have
to be determined.

Change n into n + 1 ; then

1. 2 + 2.3+...+?i(;i + l) + (?t + l) (n + 2)

=A+B(n + l) + C(n+l)* + D(n + l)3 + E(n + iy+....

By subtraction,

(n + 1) [n+2) =B+C {2n + l) + D (3}v> + 3}i + l) +E {±-n* + 6ri- + ±n + l)+ .. .

This equation being true for all integral values of n, the coefficients of the
respective powers of n on each side must be equal ; thus E and all succeeding
coefficients must be equal to zero, and

3D= 1; 3D + 2C= 3; D + C + B = 2;

1 2
whence 1) = -

•

, (7=1, B = - .

o o



256 HIGHER ALGEBRA.

Hence the sum =A +— + n2 + - n3
.

o o

To find A, put n = l; the series then reduces to its first term, and

2 = A + 2, or A = 0.

Hence 1 .2 + 2 . 3 + 3. 4 + ... + n(;i + l) = - n (n + 1) (n + 2).

Note. It will be seen from this example that when the nlh term is a
rational integral function of n, it is sufficient to assume for the sum a
function of n which is of one dimension higher than the wth term of the
series.

Example 2. Find the conditions that x3 +px2 + qx + r may be divisible by

x2 + ax + b.

Assume x3 +px2 + qx + r=(x + k) (x2 + ax + 6).

Equating the coefficients of the like powers of x, we have

k + a=p, ak + b = q, kb= r.

From the last equation k = -
; hence by substitution we obtain

b

r n ar
,

r + a=p, and — +b= q;

that is, r= b (p-a), and ar= b (q-b);

which are the conditions required.

EXAMPLES. XXII. a.

Find by the method of Undetermined Coefficients the ,sum of

1. l2+3*+ 5*+7*+...to n terms.

2. 1.2. 3 + 2. 3. 4 + 3. 4. 5 + .. .ton terms.

3. 1. 2 2+ 2.32+ 3.42 + 4.5 2 +...to n terms.

4. I 3+ 33 + 53 + V3+ . . .to n terms.

5. l 4+ 2* + 34 + 44 + ...to?i terms.

6. Find the condition that x3 -3px+ 2q may be divisible by a
factor of the form a?+%ax + a2

.

7. Find the conditions that ax3+ hv2 -\-cx + d may be a perfect cube.

8. Find the conditions that a2AA+ bx3+cx2+dx+f 2 may be a
perfect square.

9. Prove that ax2+ 2bxy+ cif-+ 2tlv+ 2ey+/ is a perfect square,
if b'

1= ac, d- = a/, e2= cf.
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10. If a.<
:i+ bx2+ cx+ d is divisible by x2 + h2

,
prove that <id= bc.

11. If 3tP— f>qx+4r is divisible by (x — c)2, shew that g*=r*,

12. Trove the identities :

a2 (x-b)(x— c) b2 (x-c)(x — a) c2 (x - a) (x - b) _ 2
( } (a-6)(«-c)

+
~(b-c){b-a)~

+
~Jc^aJ(c-b)

"

/ n
(y-^>)(^-c)<.y-cQ (ff-c)(#- eg) (.?-«)w (rt-6)(a-c)(a-J)"

t" (b-c)(b-d)(b-a)

(x - d) (x - a) (x ~b) (x - a) (x - b) (x - c)
+

{c-d){c-a)(c-b)
+
\d-a){d-b)\d-c)**

'

13. Find the condition that

ax2+ 2/ixy + by2
-f 2gx + 2fy+ c

may be the product of two factors of the form

jfctf+gy+r, jt/.t'+ ^'y+ r'.

14. If £= lx + my+ nz, r)= nx+ ly+ mz, £=mx+ n//+ l~, and if the

same equations are true for all values of x, y, z when £, 77, £ are inter-

changed with x
t y, 2 respectively, shew that

l
2+2mn = l, m 2 + 2ln = 0, n2+ 2lm=0.

15. Shew that the sum of the products -// - /• together of the n
quantities a, a2

, a3,
,..an is

(
«y + 1 -l)(tt*- + a -l)...(a»-l) i(„-r)(»-r+l).

(a -1) (a2 - 1).. .(a*-'- 1)
a

313. If the infinite series a + a
2
x + a.,x

2 + a
3
x3 + is equal

to zerofor every finite value of x for which the series is convergent,

tit en each, coefficient must be equal to zero identically.

Let the series be denoted by S, and let S\ stand for the ex-

pression a
l

+ a
2
x + a

:i

x2 + ; then S = a + xS
t

, and therefore,

l>y hypothesis, a + xS
t
= for all finite values of x. But since S

is convergent, #, cannot exceed some finite limit; tlierefore by
taking x small enough xS

x

may be made as small as we please.

In this case the limit of & is a ; but S is always zero, therefore

a
Q
must be equal to zero identically.

Removing the term a , we have xS
x
= for all finite values of

x; that is, a
x
+ a

2
x + ajc

2 + vanishes for all finite values of x.

Similarly, we may prove in succession that each of the

coefficients a n a.,, a is equal to zero identically.

H. ir.A. 17
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314. If tivo infinite series are equal to one another for every

finite value of the variable for which both series are convergent, the

coefficients of like powers of the variable in the two series are equal.

Suppose that the two series are denoted by

a + a
x
x + a x2 + a

3
x3 +

and A + A
x
x + A

2
x2 + Aj? +

;

then the expression

«o " A o
+

(«i " A i )
x +

(
a

2
- A

2)
°°

2

+ (« - Aa)
°f +

vanishes for all values of x within the assigned limits ; therefore

by the last article

a -A = O
t
a.-A^Q, a

B
-A

a
= 0, a

3
-A

a
= 0,

that is, « = ^ > °i-^n a 2 = A 2 ,
a.

d
= A

3 , ;

which proves the proposition.

2 + x2

Example 1. Expand -= „ in a series of ascending powers of x as far

as the term involving x5 .

2 + X2

Let r—

—

'-—2 = a + a
x
x + a

2
x'

2 + a.jx? + ...,

where a , fl
a , a.2 , a

:i
,... are constants whose values are to be determined; then

2 + x2— (1 + x - x2
)
(aQ + Oj a; + a

2
ar + o

a
re
3 + . .

.

)

.

In this equation we may equate the coefficients of like powers of x on
each side. On the right-hand side the coefficient of xn is an + au_1

- an_2 ,

and therefore, since x2 is the highest power of x on the left, for all values of

?t>2 we have

this will suffice to find the successive coefficients after the first three have

been obtained. To determine these we have the equations

a = 2, a
1
+ a = 0, a.

2 + a
1
-a = l;

whence a = 2, ^=-2, a2
=5.

Also a 3 + a
2
-a

1
= 0, whence a

3
= -7;

a4+ a3
~~ a2 = 0, whence a4= 12

;

and a5+ a±-a3
= 0, whence a

5
= - 19

;

thus ,

2 + X~
„= 2 - 2x + 5x2 - 7.t3 + 12x4 - 19a5 + . .

.

l+ ic-a;2
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Example 2. Prove that if n and r are positive integers

*-.fr-y+«fez3
(
.-y- -fr-?)fr-«>

fr
~+ .„

£ I

3

is equal to if r be less than n, and to |w if r= n

We have

= xn + terms containing higher powers of x. . .(1).

Again, by the Binomial Theorem,

(g*-l)n=c»w -ne(»-l)ai+^_(±Ll)e(n-2)*_
j (

2 ).

By expanding each of the terms e
nx

, e(n
~l)X

y
... we find that the coefficient

of xr in (2) is

n r (»-l)r n(n-l) (n-2) r w(m-1)(w-2) (n-3)*
1

|r [r j2 |r |3 r

and by equating the coefficients of xr in (1) and (2) the result follows.

Example 3. If y = ax + bx2 + ex3 + ,

express x in ascending powers of y as far as the term involving y
3

.

Assume x=py + qy
2 + ry3 + ,

and substitute in the given series ; thus

y= a{py + qy* + ry3 +...) + b(py + qy
2 +...y2 + c{2>y + qif+...yt +....

Equating coefficients of like powers of y, we have

an= 1 ; whence p = -
.

a

aq + bp-= ; whence q =—5 .

a6

a r + 2bpq + cp3 — ; whence r= —= ,

.

a5 a 1

m, V &'V" (2&- - ac) yThus # = •'---4- + - ?—

—

This is an example of Reversion of Series.

Cor. If the series for ?/ be given in the form

y= k + ax + bx2+ ex? + ...

put y-k= z;

then z— ax + bx- + ex3 + . .

.

;

from which x may be expanded in ascending powers of z, that is of y - k.

17—2
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EXAMPLES. XXII. b.

Expand the following expressions in ascending powers of x as far

1+2^; l-&g l+x
1_^_^.2- "' i_#_6#2- * 2+.r+ .r2'

4
3 + * 5

l
-

.

' 2 - x — x2 1 + ax — ax2 — .r
3

a -4- b v
6 Find « and b so that the nth term in the expansion of 7- --,

(l-.r)-

may be (Sn-2)xn ~ 1
.

7. Find a, b, c so that the coefficient of xn in the expansion of

a+ bx+ cx2
,

,
,—

I

^— may be n-+ l.

(l-.r)3 J

8. If y
2+%=# (3/+ 1), shew that one value of y is

|.r+ s.r-js SA +

9. If cxz+ ax -y = 0, shew that one value of x i

«

y e?/
3 3c2

;/
5 12c3

;/
7

a a4 a7 «'°

Hence shew that x= -00999999 is an approximate solution of the

equation x3 + 100.? -1 = 0. To how many places of decimals is the

result correct ?

10. In the expansion of ( 1 + x) ( 1 + ax) ( 1 + a\c) ( 1 + a\v) , the

number of factors being infinite, and a < 1, shew that the coefficient of

r
. I \ n

hr(r-l)
X 1S (l-a)(l-a2)(l-«3

) (l-O
11. When a < 1, find the coefficient of xn in the expansion of

(1 - ax) (1 —a2x) (1 — dAx) to inf.

'

12. If n is a positive integer, shew that

(1) nn+1 -n(n-l)n+1+
n^~ 1' (n-2)*+1 - =jn\n+.l

;

(2) nn -(n+l)(n-l)n + K——^- (n-2)«- =1;

the series in each case being extended to n terms ; and

(3) l"-»2»+
7t^~ 1

< 3a- =(-l)w \n;

(4) (n+p)n -n(n+p-l)n +—^—

—

' (n+p-2)n - = \n;

l±
'—

the series in the last two cases being extended to n+ 1 terms.



CHAPTER XXIII.

Partial Fractions.

315. In elementary Algebra, a group of fractions connected

by the signs of addition and subtraction is reduced to a more
simple form by being collected into one single fraction whose
denominator is the lowest common denominator of the given

fractions. But the converse process of separating a fraction into

a group of simpler, or jwtial, fractions is often required. For
3 — 5a;

example, if we wish to expand ^--„ in a series of ascend-
1 — iX -r OXT

ing powers of x, we might use the method of Art. 314, Ex. 1, and
so obtain as many terms as we please. But if we wish to find the

general term of the series this method is inapplicable, and it is

simpler to express the given fraction in the equivalent form
1 2

1- — . Each of the expressions (1 —a;)
-1 and (1 — 3aj)

-1

I — x l — ox

can now be expanded by the Binomial Theorem, and the general

term obtained.

316. In the present chapter we shall give some examples

illustrating the decomposition of a rational fraction into partial

fractions. For a fuller discussion of the subject the reader is

referred to Serret's Cours d'Algebre Superieure, or to treatises on

the Integral Calculus. In these works it is proved that any
rational fraction may be resolved into a series of partial fractions;

and that to any linear factor x — a in the denominator there cor-

responds a partial fraction of the form — - ; to any linear
X — cc

factor x - b occurring twice in the denominator there correspond
7? 7?

two partial fractions, —l

-j and -.—*__
. If x — b occurs three

x — b (x — by

times, there is an additional fraction . hnl aud so on - To
(x-b)"
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any quadratic factor x2 +px + q there corresponds a partial

Px + Q
fraction of the form — : if the factor x2 + vx + q occurs

x' +])x + q
P x + Q

twice, there is a second partial fraction y—~ L—

s

; and so on.
' r (x-+2)x + q)

Here the quantities A v B
lt
P

2 , B3 ,
P, Q, Pv Q x

are all

independent of x.

We shall make use of these results in the examples that

follow.

5x — 11
Example 1. Separate =-^ ^ into partial fractions.

Since the denominator 2.r2 + x - 6 = (x + 2) (2x - 3), we assume

5.r-ll A B
+

2x2 +x-§ x + 2 2.c-3'

where A and B are quantities independent of x whose values have to be
determined.

Clearing of fractions,

5x-ll = A (2x-S) + B(x + 2).

Since this equation is identically true, we may equate coefficients of like

powers of x ; thus
2A+B = 5, ~SA + 2B=-U;

whence A = 3, B= -1.

5.r-ll 3 1
'"'

2x2 +x-6~ x + 2 2x-B'

Example 2. Resolve ; r~. r, into partial fractions.
. (x - a) (x + b)

mx + n A B
Assume -. z-. =-r = h

(x-a)(x + b) x-a x + b'

.' . mx + n=A {x + b) +B (x-a) (1).

We might now equate coefficients and find the values of A and B, but it

is simpler to proceed in the following manner.

Since A and B are independent of x, we may give to x any value we please.

In (1) put x-a= 0, ov x= a; then

ma + n
A = r-

;

a + b

t n , -r,
nib-n

putting x + b = 0, or x— - b, B— —
.

CI "T*

mx + n

(x - a) (x + b)

1 /ma + n mb-ii\
~ a + b \ x-a x + b J
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23 v - 11 r'
2

Example 3. Resolve 7^7—-.-rrx- —^ mto partial fractions.
y£x — I) (J — x

j

23x-ll.r2 ABC
Assume = ^-^ rm r = n r+ 5 H 5 i

1
) 5

(2.c-l) (3 + x)(3-.r) 2.c-l 3 + x 3-x w
.

• . 23x - lLc2= .1 (3 + x) (3 -x)+B (2x - 1) (3 - x) + G (2x - 1) (3 + x).

By putting in succession 2^-1 = 0, 3 + x— 0, 3 - # = 0, we find that

4 = 1, B = i, C= -1.

23.c - lis2 1 4 1_
•'•

(2.c-l)(9-x2)~2x-l + 3+x 3 -a:'

3.t2 + x — 2
Example 4. Resolve -.—'

,

'—^—: into partial fractions.
[x — &)" (J. — &x\

3s2 + s-2 ^ B G
Assume z-^-n—s-7 — ~k

—k~ H « +
(x - 2)- (1 - 2x) "

1 - 2x x-2 (x - 2)
2 '

.• . %x- + x-2= A (x - 2)
2 +£ (1 - 2x) {x - 2) + C (1 - 2x).

Let 1 - 2x= 0, then A= - -

;

o

let a; -2 = 0, then C=-4.

To find B, equate the coefficients of x2
; thus

3 =A - 2B ; whence B = - ^

.

o

3.r- + x - 2
' ' (x- 2)

a
(1 - 2x) 3(1- 2x) 3 {x - 2) (x - 2)

2 '

42 - 19a;
Example 5. Resolve ——-r-, -r into partial fractions.1

[x2 +l)(x-4] L

42-19.C Ax + B C
Assume -7-3

—

tt, r; = —3—

r

- +
(.^ + 1)^-4) x-+l .i--4'

.-. 42 - 19.r = (Ax +B) (x- 4) + C (x*+ l).

Let x = 4, then C=-2;
equating coefficients of x'

2
, = A + C, and .4=2;

equating the absolute terms, 42 = - 4Z? + C, and B = - 11,

42 - 19a 2s -11 2
•'" p+l)(x-4)"^TT *-4*

317. The artifice employed in the following example will

sometimes be found useful.
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9x* — 24rc2 + 48#
Example. Resolve -;

7̂ t~. =rr- into partial fractions.r (a:-2) 4 (a:+l)

9z3 -24;r2 +48;c A f(x)
Assume —. ^tx~?

—rrv — —n +
(x-2)*(x + l) x+1 {x-2)4 '

where A is some constant, and / (x) a function of x whose value remains to

he determined.

.-. 9x3 -24£2 + 48x= ,l (x-2)*+(x + l)f{x).

Let x= - 1, then A = - 1.

Substituting for ^4 and transposing,

(x + 1)/ (a) = [x - 2)
4+ 9a3 - 24s3 + 48x= x4 + x* + 16* + 16

;

.'./(*) = £3 + 16.

•r
3 + 16

To determine the partial fractions corresponding to -—— , put x-2= 2;
\x—2)

.r
3 +16 (2 + 2)

3 + 16 23 + 6^2 +122 + 24
then

(x-2)4 Z* z*

1 6 12 24

~z +
z^
+

~z^
+

~z
4
~

1 6 12 24
+ /. nva + /_ n\n +~ x-2^(x-2)'2 ' (x-2f^ (x-2f

9x-3 -24j;2 + 48* 1,1, 6 , 12 24=
-i

-\ « + / Z Svi + TZ ^-J +" (x-2) 4 (x + l)
" x + 1 x-2 (x-2)" (x-2f (x-2) 4

*

318. In all the preceding examples the numerator has been

of lower dimensions than the denominator ; if this is not the case,

we divide the numerator by the denominator until a remainder is

obtained which is of lower dimensions than the denominator.

6r3 + 5#2 -7
Example. Resolve -zr-=—- =- into partial fractions.* ox- - 2x - 1

By division,

v- = 2x + 3 +

,

3a:2 - 2.x - 1 Sx2 - 2x - 1

8a; -4 5 1
and ^-=—pr ^ = s = +

3x2 -2x-l 3.c + l x-1'

6^ + 5^-7 5 1= 2.r + 3 + - - +'* 3x2 -2x-l 3.T+1 *-l'

319. We shall now explain how resolution into partial

fractions may be used to facilitate the expansion of a rational

fraction in ascending powers of x.
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;;
,'-

-|- ;• _ 2
Example 1. Find the general term of —-——— —

. when expanded in a
(*- 2)-(l - 2x) l

series of ascending powers of x.

By Ex. 4, Art. 316, we have

3.r2 + .r-2 15 4

(*-2)2 (l-2*) 3(1-2*) 3(*-2) (*-2) 215 4
+

3(1-2*) 3(2-*) (2-a?)a

Hence the general term of the expansion is

/ r 6 1 r+l\

V 3
+

6 • 2r sr y

7 + *
Example 2. Expand r-^r— . in ascending powers of * and find

(1 + *) (I + *~)

the general term.

. 7 + * .4 JB* + C
Assume H -— - = -— + -

;

(1 + *) (1+*J
) 1+x 1 + *2

.\ 7 + *= J(l + *2
) + (E*+C)(l + *).

Lctl + *=:0, then A = 3;

equating the absolute terms, 7 = A + C, whence C= i
;

equating the coefficients of *2
, = A + B, whence B— - 3.

7 + * 3 4-3*
+

(1 + *)(1+*2
)

_
1 + *^ 1+*2

= 3(1 + .r)-1 + (4 - 3*) (1 + x 2

)~l

= 3{l-* + *2 - + (_l)P;CP + ...j

+ (4-3*) {l-.r2 + *-»- + (-1)p*'^+...}.

To find the coefficient of xr :

r

(1) If /• is even, the coefficient of *r in the second series is 4(-l) 2
;

r

therefore in the expansion the coefficient of xr is 3 + 4 ( - 1)
2

.

r-l

(2) If r is odd, the coefficient of *r in the second series is - 3 ( - 1)
'-

r+l

and the required coefficient is 3 (
- 1)

2 - 3.

EXAMPLES. XXIII.

Resolve into partial fractions :

, lx-\ 46+13.r l+3. r+ 2.r2

l-bj;+ 6jf- ' 12.t2 -lU--15' (1 -2.r) (1 -.//-')'
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.y
2 - 10a;+13 2x*+x2-x-3

' (x-l)(x2 -5x+6)' x(x-l)(2x+ 3)'

9 „ x*- 3x* -3a;2 + 10
6

* (a;-l)(^+ 2)
2

' 7
* (#+l)2 (#-3)

26^2+ 208o; Q
2^2 -lLr+ 5

(a;
2+ l)(^+ 5)' (^--3) (^

2 + 2^- 5)

3^-8x2+10 ,, 5^ + 6.r2+ 5.r

(07-1)* * (^
2 -l)(^+l)3

'

Find the general term of the following expressions when expanded
in ascending powers of x.

l + 3# 5a;+ 6 u #2 + 7;f + 3
12#

l + llo;+ 28^* ' (2+a?)(l-#)' tf
2+ 7a-+ uy

2#-4 .« 4+ 3^+2a'2

15. t^ 5tt^—^ • 16.
(1 - x2

) (1 - 2.r)
*

(1 - x)
( 1 + x - 2x2

)

3 + 2x-x2
no 4+ 7x

17. 7, . w ,
—

ttx* • 18.
(l+a?)(l-4a?)2

*

(2 + 3a;)(l+.r)2
'

19.
*"* 20.

1 -*+i*
3(^-1)(^2 +1)" (1-tf)

21 . „ 1 22.
»-«•

(1 - cw?) (1 - te) (1 - co;)
*

'
(2 - 3.r+ a2)

2
'

23. Find the sum of n terms of the series

(l) I + - + — +
[

}

(i+^)(i+^2
)

(i+^2)(n-^) (i+^)(i+^4
)

. . x (1 - ax) ax (1 - a2x)

^ ' (1 +x) (l + ax) (1 + a%)
+

(1 + ax) (1 +a%) (1 + a3
.r)
+

24. When a? < 1, find the sum of the infinite series

1 x2 xA

(l-x) (l-x3
)

+
(1 -a?) (1 -.r5)

+
(1-tf5) (1 -^) +

25. Sum to n terms the series whose p
th term is

xp(1+xp + 1
)

(l-^)(l-.^ + 1)(l-^ + 2)'

26. Prove that the sum of the homogeneous products of n dimen-
sions which can be formed of the letters a, b, c and their powers is

an + 2 (b -c) + bn + 2 (c- a)+ cn + 2 (a-b)

a2 (b-c) + b2 (c-a) + c2 (a-b)
*



CHAPTER XXIV.

Recurring Series.

320. A series u + u
l

+ u2 + u3
+

in which from and after a certain term each term is equal to the

sum of a fixed number of the preceding terms multiplied respec-

tively by certain constants is called a recurring series.

321. In the series

1 + 2x + 3ar + 4a? + 5a;
4 + ,

each term after the second is equal to the sum of the two
preceding terms multiplied respectively by the constants 2x, and
- x2

j these quantities being called constants because they are

the same for all values of n. Thus

5x4 = 2x . 4a;
3 + (- x2

)
. 3a;

2

;

that is,

u
4
= 2xn

3
— x2u

2 ;

and generally when n is greater than 1, each term is connected
with the two that immediately precede it by the equation

u — 2xii ,
— x2u . ,h n— 1 n—2*

or u — 2xu , + x2u „ = 0.
H n — 1 ii — 2

In this equation the coefficients of u
n , «*,_,, and l*,_

a , taken

with their proper signs, form what is called the scale of relation.

Thus the series

1 + 2x + 3a;
2 + 4a;

3 + 5x4 +

is a recurring series in which the scale of relation is

1 - 2x + x2
.

322. If the scale of relation of a recurring series is given,

any term can be found when a sufficient number of the preceding
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terms are known. As the method of procedure is the same

however many terms the scale of relation may consist of, the

following illustration will be sufficient.

If 1 - px - qx2 - rx3

is the scale of relation of the series

a + a<x + aax
2 + ajc

3 +

we have

anx*=px - an -ix
"~ 1

+ <l
x"

- an - 2
x'l

~ 2
+ rx3 • an -3

x'l
~ 3

i

or a
m
=pan_, + &».- + m«- 3 5

thus any coefficient can be found when the coefficients of the

three preceding terms are known.

323. Conversely, if a sufficient number of the terms of a

series be given, the scale of relation may be found.

Example. Find the scale of relation of the recurring series

2 + 5x + 13x2 + 35x3 +

Let the scale of relation be 1 -px - qx*-, then to obtain p and q we have

the equations 13 - 5p - 2q = 0, and 35 - 13p - 5q = ;

whence p = 5, and q= - 6, thus the scale of relation is

1 - 5x + 6a;2 .

324. If the scale of relation consists of 3 terms it involves

2 constants, p and q ; and we must have 2 equations to de-

termine p and q. To obtain the first of these we must know
at least 3 terms of the series, and to obtain the second we
must have one more term given. Thus to obtain a scale of

relation involving two constants we must have at least 4 terms
'O

given.

If the scale of relation be 1 — px — qx2 - rx3
, to find the

3 constants we must have 3 equations. To obtain the first of

these we must know at least 4 terms of the series, and to obtain

the other two we must have two more terms given ; hence to find

a scale of relation involving 3 constants, at least G terms of the

series must be given.

Generally, to find a scale of relation involving m constants,

we must know at least 2m consecutive terms.

Conversely, if 2m consecutive terms are given, we may assume

for the scale of relation

1 ~ l\x ~ l\x* ~ lhx* ~ -PJ**
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325. To find the sum ofn terms of a recurring series.

The method of finding the sum is the same whatever be the
scale of relation ; for simplicity we shall suppose it to contain

only two constants.

Let the series be

a
u
+ a

x
x + a

2
x2 + aj£ + (1)

and let the sum be S ; let the scale of relation be 1 — px — qx*
;

so that for every value of n greater than 1, we have

Now S—a
it
+ a.x + a,x

2 + ...+ a ,x"~\
1 2 /»— 1 '

— px S= — pa x —pa
x
x* — ... — 2^>ci

H _ 2
xn~ l —pa x*

t

- qa? S= - qajt? - ... -qa
H _ 3

x*-
1 -qa

H _ i
xn-qa

H _ l
xu +

\

... (i -px _ qtf) S - a + {a
x
-pa ) x - {pan_ x

+ qa
n_a)

xn - qa^x** 1

,

for the coefficient of every other power of x is zero in consequence

of the relation

an-Pan-l-<2a«-2= '

. s _ % + («, -P<-Q x (Pa,t -, + qa
n- 3 )

x" + qa
n _ }

xH+l

1 -px— qx2
1 - px — qx2

Thus the sum of a recurring series is a fraction whose de-

nominator is the scale of relation.

32G. If the second fraction in the result of the last article

decreases indefinitely as n increases indefinitely, the sum of an

infinite number of terms reduces to —\—

—

!—-—^— .

1 — px — qx"

If we develop this fraction in ascending powers of x as

explained in Art. 314, we shall obtain as many terms of the

original series as we please; for this reason the expression

1 —px — qx2

is called the generatingfunction of the series.

327. From the result of Art. 325, we obtain

an + (a , —Pa.) X o .xi
-°,

v
'—£—%— = a

lt
+ a.x + ax- + ... +a xn + l

1 -px — qx' ° '
2 " -1

1 - px— qx
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from which we see that although the generating function

1 — px — qx2

may be used to obtain as many terms of the series as we please,

it can be regarded as the true equivalent of the infinite series

a + a
l
x + a

2
x2 + ,

only if the remainder

(I**,.-, +qan- 2)
xn + (2an-^"

+l

1 — poj — qx2

vanishes when n is indefinitely increased ; in other words only

when the series is convergent.o v

328. When the generating function can be expressed as a

group of partial fractions the general term of a recurring series

may be easily found. Thus, suppose the generating function

can be decomposed into the partial fractionsABC
h h

1— ax 1 + bx (I— ex)
2

'

Then the general term is&
{Aar + (- l)

rMr + (r + 1) Ccr

} x\

In this case the sum of n terms may be found without using

the method of Art. 325.

Example. Find the generating function, the general term, and the sum
to n terms of the recurring series

1 - Ix - x 2 - 43.-C
3 -

Let the scale of relation be 1 -px - </.r
2

; then

-l + 7j>-<z = 0, -43 + 2> + 7</ = 0;

whence p = l, 5 = 6; and the scale of relation is

1 - x - 6.r2.

Let S denote the sum of the series ; then

S= l-lx- x2 -4Sxs -

-xS= - x + 7x2 + x*+

-Qx2S= -6x2 + 42.r3 +

.-. (l-x-6x2)S= l-8x,

s-
J" 8* -

which is the generating function.
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1 - 8.r 2 1
If we separate ^-„ into partial fractions, we obtain -—-

;1-x-U.r- ±
1 + 2a; 1-305'

whence the (r+ l) tU or general term is

{(-lyw^-v ].<>.

Putting r = 0, 1, 2,...n -1,

the sum to ?i terms

= { 2 - 22x + 2%2 -... + (- I)"" 1 2" a;' 1
"

1
}
- (1 + 3a + 3%* + . . . + 3"-1 xn~ l

)

_ 2 + ( - I)'
1" 1 2n+1 xn _ 1_- 3* xn~

l+lte 1 - 3x~
'

329. To find the general term and sum of n terms of the

recurring series a + a
i
+ a_,+ , we have only to find the

general term and sum of the series a + a
l
x + a

2
x2 + , and put

x — 1 in the results.

Example. Find the general term and sum of n terms of the series

1 + 6 + 24 + 84+

The scale of relation of the series 1 + 6.r + 24x2 + 84x3 + . . . is 1 - ox + Ooj
2

,

1 + x
and the generating function is —-

—

*—— .

1 — OX + OX"

This expression is equivalent to the partial fractions

4 3

1 - Sx 1 - 2a;

'

If these expressions be expanded in ascending powers of x the general

term is (4 . 3r - 3 . 2r) xr.

Hence the general term of the given series is 4 . 3r -3. 2r ; and the sum
of n terms is 2 (3'1 - 1) - 3 (2'1 - 1).

330. We may remind the student that in the preceding

article the generating function cannot be taken as the sum of

the series

1 +6x + 24:x
2 +8±x3 +

except when x has such a value as to make the series convergent.

Hence when x = 1 (in which case the series is obviously divergent)

the generating function is not a true equivalent of the series.

But the general term of

1 + 6 + 24 + 84 +

is independent qfx, and whatever value x may have it will always
be the coefficient of x" in

1 + Gx + 24*2 + 84a3 +

We therefore treat this as a convergent series and find its

general term in the usual way, and then put x = 1.
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EXAMPLES. XXIV.

Find the generating function and the general term of the following

series

:

1. l + 5.r+ 9.r2 +13.r3+ 2. 2-.v+ 5.r2 -7.r3+

3. 2 + 3x+ 5x2+ 9x3+ 4. 7 -6x + 9x2+ 27x4+

5. 3 + 6a?+ Ux2+ 36.r*+ 98.^+ 276.1-5+

Find the nth term and the sum to n terms of the following series :

6. 2 + 5 + 13 + 35+ 7. -l+6.v2+ 30.v3 +

8. 2 + 7^ + 25^+ 91^+

9. 1 + 2.v+ 6x2+ 20#3 + 66x*+ 212^+

10. -^ + 2 + + 8+

11. Shew that the series

1 2 + 22+ 32+ 42 + + n2
,

1 3 + 23+ 33 + 43+ +n3
,

are recurring series, and find their scales of relation.

12. Shew how to deduce the sum of the first n terms of the re-

curring series

a + a
x
x+ a2x

2+ a^v3+
from the sum to infinity.

13. Find the sum of 2n + 1 terms of the series

3-1 + 13-9 + 41-53+

14. The scales of the recurring series

a +

a

vv+ a^x2 + a3.r
3+ ,

b + b1
x+b^c2 -{-b

3
.v
3+ ,

are 1 +px+qx2
, l + rx+ sx2, respectively; shew that the series whose

general term is (<xn+6n)^" is a recurring series whose scale is

l + (p + r)x + (q+ s +pr) x2 + (qr +ps) x3+ qsx*.

15. If a series be formed having for its nih term the sum of n terms

of a given recurring series, shew that it will also form a recurring

series whose scale of relation will consist of one more term than that

of the given series.



CHAPTER XXV.

CONTINUED FllACTIONS.

331. All expression of the form a + is called a
a

c + -
e + ...

continued fraction ; here the letters a, b, c, may denote any
quantities whatever, but for the present we shall only consider

the simpler form a
x

+ ,
where an a2i «

3
,... are positive

2 a
3
+ ...

integers. This will be usually written in the more compact form

1 1
a, +

a
2
+ a3 +

332. When the number of quotients a a , «3
,... is finite the

continued fraction is said to be terminating ; if the number of

quotients is unlimited the fraction is called an infinite contirmed
fraction.

It is possible to reduce every terminating continued fraction

to an ordinary fraction by simplifying the fractions in succession

beginning from the lowest.

333. To convert a given fraction into a continuedfraction.

tn
Let — be the tnven fraction ; divide in by n, let a be the

quotient and j> the remainder ; thus

m p 1— — a. +- =a, + — :

n n n

P
si. H. A 18
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divide n by ^», ^ «„ be the quotient and q the remainder ; thus

n q 1
- = a. + - = a

s
+ - ;

V ' V ' P
9.

divide p by q, let a.
6
be the quotient and r the remainder ; and .so

on. Tims

1 1 1rn,— = a. +
n i

1

= a. +

«o +
a
2
+ a

3
+

a
3
+.

If m is less than ?t, the first quotient is zero, and we put

7)1 1

n ti

m
and proceed as before.

It will be observed that the above process is the same as that

of finding the greatest common measure of m and n ; hence if m
and n are commensurable we shall at length arrive at a stage

where the division is exact and the process terminates. Thus
every fraction whose numerator and denominator are positive

integers can be converted into a terminating continued fraction.

251
Example. Reduce ^^ to a continued fraction.

Finding the greatest common measure of 251 and 802 by the usual
process, we have

5
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335. To shew that the convergents ewe alternately less and
greater than the continuedfraction.

1 1
Let the continued fraction be a

l
+
a

2
+ a

3
+

The first convergent is «,, and is too small because the part

is omitted. The second convergent is a -i— , and is
a
a
+a

3
+ ° l a

k

too great, because the denominator a
a

is too small. The third

convergent is a, -\ , and is too small because a -\— is too
a2+ CC

3 %
great ; and so on.

When the given fraction is a proper fraction a
t

= ; if in this

case we agree to consider zero as the first convergent, we may
enunciate the above results as follows :

The convergents of an odd order are all less, and the convergents

of an even order are all greater, than the continuedfraction.

336. To establish the law of formation of the successive con-

vergents.

Let the continued fraction be denoted by

1 1 1
a

x
+
a

2
+ a

3
+ a

4
+

then the first three convergents are

a. a
x
a
3 + 1 o, (a, a, + !) + «,

1 a
2

a
3

. a
2
+ 1

and we see that the numerator of the third convergent may be
formed by multiplying the numerator of the second convergent
by the third quotient, and adding the numerator of the first con-

vergent ; also that the denominator may be formed in a similar

manner.

Suppose that the successive convergents are formed, in a

similar way; let the numerators be denoted by^,^.,, p3
,..., and

the denominators by q lt q , q3
,...

Assume that the law of formation holds for the »tt convergent;
that is, suppose

1\ = »J».-i +P»-i In = <*
n ?.-, + Q„- 2

-

18—2
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The (*+ l)
th convergent differs from the ft* only in having

the quotient a
n
+± in the place of aj hence the (» + 1)- «*

vergent

^n-n ^» + ^»-i
?
by supposition.

«n+1 ?„ + ?„_!'

If therefore we put

co. th«t the numerator and denominator of the (» + l)
th con-

we ^ ^*^^ which was supposed to hold in the case of^ ftttVs hold in
P
the case of the third con-

vergent, hence it holds for the fourth, and so on; therefore *

holds universally.

337. It will be convenient to call aH
the n* partial quotient;

the complete quotient at this stage being an +
a„+1 + «« +2 4

We shall usually denote the complete quotient at'any stage by ft.

We have seen that

let the continued fraction be denoted by m ;
then x differs from

& only in taking the complete quotient ft instead of the partial

quotient a„ ; thus

_ ft j^i-l + ff»-2
X ~kq n_ x

+ qn - 2

'

338 // Eb 6e tfl6 nth convergent to a continuedfraction, then

Q

Let the continued fraction be denoted by

111
a, +

1 aQ
+ a3 + a

4
+
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then

= (" 1
)

2

(P.- 2 9«-a -iV, ^-2)1 similarly,

But p2 qx -]\ q, = (<h % + 1) - «x • a, = 1 = (- l)
2

J

hence />„ g^, -#,_, g, = (- 1)".

When the continued fraction is less than unity, this result will

still hold if we suppose that a
x
= 0, and that the first convergent

is zero.

Note. When we are calculating the numerical value of the successive
convergents, the above theorem furnishes an easy test of the accuracy of the
work.

Cor. 1. Each convergent is in its lowest terms ; for iipn and

qn
had a common divisor it would divide pn qnl —pn_l qni or unity

;

which is impossible.

Cor. 2. The difference between two successive convergents is

a fraction whose numerator is unity ; for

q» ?«_i qn qn^ q,,qn-i'

EXAMPLES. XXV. a.

Calculate the successive convergents to

1. 2 +
l

*
l

'
l

2.

6+ 1+ 1+ 11+ 21111111
3. 3 +

2+ 2+ 3+ 1+ 44- 2+ 6111111
3+ 1+ 2+ 2+ 1+ 9"

Express the following quantities as continued fractions and find the

fourth convergent to each.

729
4.



278 HIGHER ALGEBRA.

12. A metre is 39*37079 inches, shew by the theory of continued

fractions that 32 metres is nearly equal to 35 yards.

13. Find a series of fractions converging to "24226, the excess in

days of the true tropical year over 365 days.

14. A kilometre is very nearly equal to "62138 miles; shew that

A, . .. 5 18 23 64 . •*•* «.
the fractions -, ^ , == , ^z are successive approximations to the

ratio of a kilometre to a mile.

15. Two scales of equal length are divided into 162 and 209 equal

parts respectively; if their zero points be coincident shew that the

31 st division of one nearly coincides with the 40th division of the other.

16. If— s is converted into a continued fraction, shew
n3+ nu+ n+ l

that the quotients are n— 1 and n+l alternately, and find the suc-

cessive convergents.

17. Shew that

Pn + \~Pn - 1 _Pn
(!)

2n + 1 9.n - 1 9.n

(2) (^-O^-fH-vr-
2- 1

\ Pn / \ Pn + U \ cJn ,

X
g«-l

18. If — is the nth convergent to a continued fraction, and an the

corresponding quotient, shew that

339. Each convergent is nearer to the continued fraction than

any of the 'preceding convergents.

Let x denote the continued fraction, and *—
"-

,
^-*±J —"-±2

9* ?«+ ! ^+2

three consecutive convergents; then x differs from *-a±l only in

taking the complete (n + 2)
th quotient in the place of a ; denote

this by k: thus x = ?n+l +Pn
;

and ^^ ~ a; =Pn+ 1 Pn^l^n-Pn^l 1

& + 1 ?„+ , (%»+l + 7.) y.+ , (%„ + ,
+ ?„)

"
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Now k is greater than unity, and qm
is less than q ; lience on

botli accounts the difference between --" '

' and x is less than the

difference between —" and x: that is, every convergent is nearer

to tlie continued fraction than the next preceding convergent,
and therefore a fortiori than any preceding convergent.

Combining the result of this article with that of Art. .°>3.>, it

follows that

tli^ convergent of an odd order continually increase, hat are

always less than the continuedfraction ;

tin' covrergents of an even order continually decrease, hut are

always greater than the continued fraction.

340. Tofind limits to the error made in taking any convergent

for the continuedfraction.

p p p
Let — ,

Y-^1 r_n±2
] )0 three consecutive convorgents, and let

k denote the complete (n + 2)
th quotient;

then x=^^ t

p k 1

<ln <ln(k<ln + >+ nJ
'.(*•«

+9
i)

Now k is greater than 1, therefore the difference between x and

p.. . •
i .. i— is less than , and greater than -

p
Again, since

<7,
1 + l

><7„, the error in taking -" instead of x is

1 1
less than —5 and greater than 77-0— .

?. v.+ ,

341. From the last article it appears that the error in

p 1
taking — instead of the continued fraction is less than -

,

qm ?.?.+,

or

—

; ; ; that is, less than 3 : hence the larger
a (a ., 7 +q ,) « . .7

"

/ (I V II +1 ill 2 Ft— 1/ 11+ I ili

a
i+l

is, the nearer does £2 approximate to the continued fraction;

/

«
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therefore, any convergent which immediately precedes a large

quotient is a near approximation to the continuedfraction.

Again, since the error is less than —
g , it follows that in order

to find a convergent which will differ from the continued fraction

by less than a given quantity - , we have only to calculate the
a

successive convergents up to — , where q n

2
is greater than a.

342. The properties of continued fractions enable us to find

two small integers whose ratio closely approximates to that of

two incommensurable quantities, or to that of two quantities

whose exact ratio can only be expressed by large integers.

Example. Find a series of fractions approximating to 3* 14159.

In the process of finding the greatest common measure of 14159 and
100000, the successive quotients are 7, 15, 1, 25, 1, 7, 4. Thus

3-14159=3+1 1 1 1
111

7+ 15+ 1+ 25+ 1+ 7+ 4

The successive convergents are

3 22 333 355

1 ' 7 ' 106 ' 113

'

this last convergent which precedes the large quotient 25 is a very near

approximation, the error being less than ^- , and therefore less than

25TP5)-
» •°00004 -

343. Any convergent is nearer to the continued fraction than

any other fraction whose denominator is less than that of the

convergent.

V P
Let x be the continued fraction, — ,

'-*=* two consecutive
°n ?.-,

r
convergents, - a fraction whose denominator s is less than q .°

8
"

r v r
If possible, let - be nearer to x than —

, then - must be
« ?» s

7) . P
nearer to x than -Ji^1 [Art. 339] ; and since x lies between -- and

In - J
I"

£-5=? it follows that - must lie between — and —
'

.

9.-X S % ?»-!
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Hence

r P»-*P. Pn-i fWi<5 ^ l

.'. rq
n_ x

~ sp
n_ x

< £ ;

that is, an integer less than a fraction ; which is impossible.

p r
Therefore — must be nearer to the continued fraction than -

.

& *

P P'
344. If -

,
— be two consecutive convergents to a continued

fraction x, then —, is greater or less than x2
, according as - is

greater or less than —,

.

q

Let k be the complete quotient corresponding to the con-

vergent immediately succeeding —
,

; then x — -f—.— ,° J ° q" lcq ' + q

' '' 5 " * =
WW^YYw {hq

'

+ qY " "'w

+

pY]

= (tfp'q
,

-pq)(pq'-2>'q)

qq'(kq' + q)
2

The factor ky'q' - pq is positive, since p' >p, q' >q, and k> I

;

pp'
lience —, > or < x2

, according as ]iq' —p'q is positive or negative
;

that is, according as - > or < —,

.

Cor. It follows from the above investigation that the ex-

pressions ]iq'—2)/

q i VP ~ cLcL^-> p
2 - q

2M2

,
q'

2x2 —p' 2 have the same
sign.

EXAMPLES. XXV. b.

222
1. Find limits to the error in taking — yards as equivalent to

a metre, given that a metre is equal to 1-0936 yards.
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2. Find an approximation to

JL J_ J- JL JL+ 3+ 5+ 7+ 9+ 11+

which differs from the true value by less than -0001.

99
3. Shew by the theory of continued fractions that =- differs from

1*41421 by a quantity less than .

„ a3+ 6a2+ 13a+10 ,. , , ,. n

4. Express
, \ . , A « , 1K rs as a continued fraction, and

1 a4+6a3+ 14a--+15a+ 7

find the third convergent.

5. Shew that the difference between the first and nth convergent

is numerically ecpial to

1 1 1 (-l)n
+ ...+

Mi Ms Wh 9n-l2n

p
6. Shew that if a n is the quotient corresponding to s-5

,

^ ' Pn-1~
a
" «n-l+ «u- 2+ 0»-3+ '" «3+ a2+ «1

'

(2) _i- =an+_L_ ^2 L_ ... J_ 1. ,

qn-1 an-l+ «»-2+ ttn-3+ «3+ «2

1111
7. In the continued fraction — , shew that

«+ a+ «+ « +

( 1

)

Pn +P\ + 1=Pn-lPn + 1+ £>„£>„ + 2 >

(
2

) Pn= qn -l-

8. If — is the ?i
th convergent to the continued fraction

111111
«+ b+ a+ b+ a+ 6 +

a

b r- n -

a
shew that q2n=p2n + u q2n - 1= r #».. •

9. In the continued fraction

1111
a+ 6+ «+ 6+ '

shew that

Pn + 2~ (
ah + 2

) Pn +Pn-2= °i 9n + 2 ~ (
ab+ 2

) ?u+ •?•*- 2= °-
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10. Shew that

/ 111 x . L \
a[a\ + - to 2/i quotients
\

x
a.v.j,+ ar3+ oa;4+ /

= «.v,H to 2/i quotients.
:r.,+ oa?3+ .v,+

11. If -r; , - ,
- , are the ntU

,
(n— l)th. (?i-2)th convergent* to the

iV (^ A3

continued fractions

111 111 111
ai+ ((2+ aS+ ' tt*+ aB+ W4+ ' (':5+ "4+ a5+ '

respectively, shew that

J/= OjP + 5, iV
T=(a^ + 1) P + aJL

12. If — is the nth convergent to

j. i i_

a+ « + a +
"

'

'

shew that pn and qn are respectively the coefficients of xn in the

expansions of

# . «.#+ x2

and
1 — ax — x2 1 — «-r — x2

'

an _ Qn
Hence shew that pn—<In-i= i >

where a, /3 are the roots of the

equation t
2 - at - 1 = 0.

13. If — is the n th convergent to
9n

_l 1 1 1_

a + b-\- a+ b-t-
"

'

'

shew that pn and qn are respectively the coefficients of xn in the

expansions of

x+ bx2 —^ . ax+(ab + l)x2 — xA
and

1 - (ab+ 2)x2+ x* 1 - (aft+ 2) x2 + xA '

Hence shew that

op,n= bq2n_ x
= ab

a
,

where a, /3 are the values of x2 found from the equation

l-(ab + 2)x2 + xA = 0.



CHAPTER XXVI.

INDETERMINATE EQUATIONS OF THE FIRST DEGREE.

345. In Chap. X. we have shewn how to obtain the positive

integral solutions of indeterminate equations with numerical co-

efficients; we shall now apply the properties of continued fractions

to obtain the general solution of any indeterminate equation of

the first degree.

346. Any equation of the first degree involving two un-

knowns x and y can be reduced to the form ax±by = ± c, where
a, 6, c are positive integers. This equation admits of an unlimited

number of solutions ; but if the conditions of the problem require

x and y to be positive integers, the number of solutions may be

limited.

It is clear that the equation ax + by = — c has no positive

integral solution ; and that the equation ax — by = — c is equivalent

to by — ax — c) hence it will be sufficient to consider the equations

ax ±by — c.

If a and b have a factor m which does not divide c, neither of

the equations ax±by = c can be satisfied by integral values of x
and y ; for ax ± by is divisible by m, whereas c is not.

If a, b, c have a common factor it can be removed by division;

so that we shall suppose a, b, c to have no common factor, and
that a and b are prime to each other.

347. To find the general solution in positive integers of the

equation ax — by — c.

Let - be converted into a continued fraction, and let — denote
6 q

the convergent just preceding j ; then aq—bp = ±l. [Art. 338.]
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I. If aq — bj) — 1, the given equation may l»e written

ax — by — c (aq — b]j)
;

.-. a(x — cq) -b (y — c/>).

Now since a and b have no common factor, x — cq must be

divisible by b ; hence x — cq = bt, where t is an integer,

x- cq y — cP.
b a

that is, x = bt + cq, y — at + cj)
\

from which positive integral solutions may be obtained by giving

to t any positive integral value, or any negative integral value

en cd
numerically smaller than the less of the two quantities -j- , — \

also t may be zero; thus the number of solutions is unlimited.

II. If aq — bp — — 1, we have

ax — by — — c (aq — bji)
;

.'. a(x + cq) = b (y + cj)) ',

x + cq y + cp
.

•

. —=—- = — = t, an integer

;

o a

lience x = bt — cq, y — at — cp;

from which positive integral solutions may be obtained by giving

to t any positive integral value which exceeds the greater of the

CO CD
two quantities -=-,—; thus the number of solutions is unlimited.

o a

III. If either a or b is unity, the fraction j- cannot be con-

verted into a continued fraction with unit numerators, and the

investigation fails. In these cases, however, the solutions may be

written down by inspection; thus if 6 = 1, the equation becomes

ax — y = c; whence y = ax—c, and the solutions may be found by

ascribing to x any positive integral value greater than -

.

a

Note. It should be observed that the series of values for x and y form
two arithmetical progressions in which the common differences are b and a

respectively.
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Example. Find the general solution in positive integers of 29.r - 42*/ = 5.

In converting — into a continued fraction the convergent just before —
13

is -jr ; we have therefore

29xl3-42x9 = -l;

.-. 29x65-42x45 = - 5;

combining this with the given equation, we obtain

29 (* + 65) =42(# + 45);

x + 65 u + 45
•*• -£j- = 29" = *» an mte8er 5

hence the general solution is

a:= 42«-65, ij = 20t~4o.

348. Given one solution in positive integers of the equation

ax — by = c, tojind the general solution.

Let h, k be a solution of ax-by = c; then ah — bk = c.

.'. ax — by = ah - bk
;

.'. a (x — h) — b(y — k);

x—h y—k
.'. —z— = = t. an integer

;

b a

.'. x = h + bt, y — k + at

;

which is the general solution.

349. To Jind the general solution in positive integers of the

equation ax + by = c.

a D
Let t be converted into a continued fraction, and let — be the

b q

convergent just preceding j ; then aq — bp=± 1.

I. If aq — bp=l, we have

ax +by = c (aq — bp);

.'. a(cq — x) = b(y + c2));

cq — x y + cp
.' . -=-=— = ——— = L an integer

;

b a ° '

.
' . x = cq — bt, y

'
— at - cp

;
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from which positive integral solutions may be obtained by giving

CI) CO
to t positive integral values greater than — and less than j- .

Thus the number of solutions is limited, and if there is no integer

fulfilling these conditions there is no solution.

II. If aq — bp = - 1, we have

ax + by = — c (aq — bp)
;

.-. a(x + cq) = b(cp-y);

x + co en - y
• —-— = — = t. an integer

;
JL « ' 7

o a

.
•

. x=bt — cq, y = cj) — at

;

from which positive integral solutions may be obtained by giving

co cP
to t positive integral values greater than -~ and less than

As before, the number of solutions is limited, and there may be

no solution.

III. If either a or b is equal to unity, the solution may be

found by inspection as in Art. 317.

350. Given one solution in positive integers of Ike equation

ax + by = c, to find the general solution.

Let A, k be a solution of ax -f by — c ; then ah + bk = c.

.
'

. ax + by — ah + bk

;

.'. a (x — h) — b (k - y)

;

x—hk—y
.'. —7— =- —-— t, an integer

;
o a

.'. x = h + bt, y - k — at

;

which is the general solution.

351. To find the number of solutions in positive integers of the

equation ax + by = c.

Let T be converted into a continued fraction, and let - be the
b q

convergent just preceding j ; then aq — bp = at 1.
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I. Let aq -bp = l ; then the general solution is

x = cq-bt, y = at- ep. [Art. 349.]

Positive integral solutions will be obtained by giving to t

positive integral values not greater than °f , and not less
o

than —

.

a

c c
(i) Suppose that - and T are not integers.

a b °

Let — = m+f. -± = n + a.
a J

b
y '

where m, n are positive integers and J\ g proper fractions ; then
the least value t can have is m+ 1, and the greatest value is n;
therefore the number of solutions is

cq cp . c j.n-vi = -±- — +f- g=-—+f-g.
b a J J ab J J

Now this is an integer, and may be written — + a fraction, or
ab

—r- a fraction, according as/is greater or less than g. Thus the

number of solutions is the integer nearest to —
,
greater or less

according as/ or g is the greater.

(ii) Suppose that z- is an integer.

In this case g - 0, and one value of x is zero. If we include
c

this, the number of solutions is -r+f, which must be an in-
ao

teger. Hence the number of solutions is the greatest integer in
C C

^7+1 or -j ,
according as we include or exclude the zero solution.

c
(iii) Suppose that - is an integer.

cc

In this case/=0, and one value of y is zero. If we include
this, the least value of t is m and the greatest is n; hence

the number of solutions is 71 —m + l. or —r - q + 1. Thus the
ab
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c c
number of solutions is the greatest integer in -7 + 1 or —=. ae-

ab ab

cording as we include or exclude the zero solution.

c c
(iv) Suppose that - and 7 are both integers.

In this case f— and y = 0, and both x and y have a zero

value. If we include these, the least value t can have is m, and
the greatest is n ; hence the number of solutions is 11-111+ 1, or

-y + 1. If we exclude the zero values the number of solutions is
ab

4-i.
ab

II. If aq -bp= - 1, the general solution is

x = bt — cq
}
y— cp — at,

and similar results will be obtained.

352. To find the solutions in positive integers of the equa-

tion ax + by + cz — d, we may proceed as follows.

By transposition ax + by = d — cz ; from which by giving to z

in succession the values 0, 1, 2, 3, we obtain equations of

the form ax + by = c, which may be solved as already explained.

353. If we have two simultaneous equations

ax + by + cz=d, ax + b'y + cz = d\

by eliminating one of the unknowns, z say, we obtain an equation

of the form Ax + By = C. Suppose that x —f, y — g is a solution,

then the general solution can be written

x=f+Bs, y = g-As,

where s is an integer.

Substituting these values of x and y in either of the given
equations, we obtain an equation of the form Fs + Gz = II, of

which the general solution is

8 = h + Gt, z = k - Ft say.

Substituting for s, we obtain

x=f+Bh + BGt, y = g-Ah-AGt;

and the values of x, y, z are obtained by giving to t suitable

integral values.

H. H. A. 19
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354. If one solution in positive integers of the equations

ax + by + cz = d, ax + b'y + c'z = d',

can be found, the general solution may be obtained as follows.

Lety, g, h be the particular solution ; then

af+ bg + ch = d, a'f+ b'g + ch = d'.

By subtraction,

a(x-f) + b(y-g)+c(z- h) = 0, 1

a'(x-/) + b'(y-g) + c'(z-h) = 0;
j

whence

x-f = y-g _ z-h _ t

be — b'c ca — c'a ab' — a'b k
'

where t is an integer and k is the H.C.F. of the denominators

be — b'c, ca — c'a, ab' — a'b. Thus the general solution is

x =f+ (be' — b'c) j , y — g + (ca' — c'a) =• , z = h + (ab' - a'b) ?.
/c fc fc

EXAMPLES. XXVI.
j

Find the general solution and the least positive integral solution, of

1. 775.r-711y = l. 2. 455#-519y=l. 3. 436#-393y= 5.

4. In how many ways can ,£1. 19s. 6d. be paid in florins and half-

crowns ?

5. Find the number of solutions in positive integers of

lLe+15y=1031.

6. Find two fractions having 7 and 9 for their denominators, and
such that their sum is 1 £-§-.

7. Find two proper fractions in their lowest terms having 12

and 8 for their denominators and such that their difference is — .

24

8. A certain sum consists of x pounds y shillings, and it is half
of y pounds x shillings ; find the sum.

Solve in positive integers

:

9. 6#+ty + 4s=122\ 10. 12.r-lly+ 4^=22
lhr + 8y- 6^=145

21 10. 12x - 1 \y+ 4z= 221

5J

'

-4.v+ 5y+ z=ll)
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11. 20^-21^=381 12. 13^+ 1 Is=103)

3y+ 4s =34/
'

7z - by= 4J

"

13. 7.r+ 4y + 19^= 84. 14. 23.r+17.y + lU= 130.

15. Find the general form of all positive integers which divided

by 5, 7, 8 leave remainders 3, 2, 5 respectively.

16. Find the two smallest integers which divided by 3, 7, 11 leave

remainders 1, 6, 5 respectively.

17. A number of three digits in the septenary scale is represented
in the nonary scale by the same three digits in reverse order ; if the

middle digit in each case is zero, find the value of the number in the
denary scale.

18. If the integers 6, «, b are in harmonic progression, find all the
possible values of a and b.

19. Two rods of equal length are divided into 250 and 243 equal

parts respectively ; if their ends be coincident, find the divisions which
are the nearest together.

20. Three bells commenced to toll at the same time, and tolled at

intervals of 23, 29, 34 seconds respectively. The second and third

bells tolled 39 and 40 seconds respectively longer than the first ; how
many times did each bell toll if they all ceased in less than 20 minutes?

21. Find the greatest value of c in order that the equation
7.r+ 9y= c may have exactly six solutions in positive integers.

22. Find the greatest value of c in order that the equation

14r+ lly=c may have exactly five solutions in positive integers.

23. Find the limits within which c must lie in order that the

equation 19x+ 14y= c may have six solutions, zero solutions being

excluded.

24. Shew that the greatest value of c in order that the equation

ax+ by = c may have exactly n solutions in positive integers is

(n+ l)ab-a-b, and that the least value of c is (n-l)ab + a + b
}
zero

solutions being excluded.

in o



CHAPTER XXVII.

RECURRING CONTINUED FRACTIONS.

355. We have seen in Chap. XXV. that a terminating con-

tinued fraction with rational quotients can be reduced to an

ordinary fraction with integral numerator and denominator, and
therefore cannot be equal to a surd ; but we shall prove that a

quadratic surd can be expressed as an infinite continued fraction

whose quotients recur. We shall first consider a numerical

example.

Example. Express ^19 as a continued fraction, and find a series of

fractions approximating to its value.

x/19 = 4 + (v/19-4) = 4+ Tl9

3
-

+
-;

v

v/19 + 4_ 2 ,x/19z_2_ 5 ,

3
+

3 V19 + 2
'

N/19 + 2_ 1j_
^19-3 , . 2=1+^— = 1 +

5 5 \/19 + 3'

,/19+ S ^£9-8 5 .

2 2 \/19 + 3'

v/19 + 3_ 1 1 V19-2_
1 ,

3
1 +

5 ~ 1 +
N/

2 +
/L9 + 2 n iN/19-4 0i 1

3 ~ \/19 + 4'

N/19 + 4 = 8 + (N/19-4) = 8 +

after this the quotients 2, 1, 3, 1, 2, 8 recur; hence

1 1 Jl_£ 1 2.
V 19- 4 +

2+ 1+ 3+ 1+ 2+8+ •••

It will be noticed that the quotients recur as soon as we come to a

quotient which is double of the first. In Art. 361 we shall prove that this is

always the case.
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[Explanation. In each of the lines above we perform the same series of

operations. For example, consider the second line : we first find the

greatest integer in -—-— ; this is 2, and the remainder is -— 2, that
o 6

is ^—^— . We then multiply numerator and denominator by the surd
o

5
conjugate to ^19-2, so that after inverting the result . , we begin a

new line with a rational denominator.]

The first seven convergents formed as explained in Art. 336 are

4 9 13 48 61 170 1421

1 ' 2 ' 3 ' 11 ' 14 ' 39 ' 326
'

The eiTor in taking the last of these is less than ,
' _ , and is therefore

less than .
— - , or , and a fortiori less than -00001. Thus the

seventh convergent gives the value to at least four places of decimals.

356. Every periodic continued fraction is equal to one of the

roots of a quadratic equation of which the coefficients are rational.

Let x denote the continued fraction, and y the periodic part,

and suppose that

1 1

»

x = a+ z
,

,

b + c +
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The equation s'y
2 + {s — r) y — r = 0, which gives the value of

y, has its roots real and of opposite signs ; if the positive value of

v'y + p
ii be substituted in x = -, —— , on rationalising the denominator

qy+q

the value of x is of the form ~-— , where A, B, C are integers,
G

B being positive since the value of y is real.

,1111
Example. Express l + s— 5

— ~— ^-— ... as a surd.

1 1
Let x be the value of the continued fraction ; then x - 1 = =— — —

;
£> + O + \X — 1)

whence 2x2 + 2x - 7 = 0.

The continued fraction is equal to the positive root of this equation, and

is therefore equal to ^—-— .

EXAMPLES. XXVII. a.

Express the following surds as continued fractions, and hnd the

sixth convergent to each

:

1. v/3. 2. ^5. 3. y/6. 4. s/8.

5. v/11. 6. x/13. 7. x/14. 8. V22.

9. 2^3. 10. 4 v/2. 11. 3^5. 12. 4 N/10.

13
- j&- 14

- V33-
15

- \/s-
16

- \/n-
268

17. Find limits of the error when —— is taken for N/17.
65

916
18. Find limits of the error wThen '—- is taken for v/23.

19. Find the first convergent to N/101 that is correct to five places

of decimals.

20. Find the first convergent to VI 5 that is correct to five places

of decimals.

Express as a continued fraction the positive root of each of the

following equations

:

21. x*+ 2x-l = 0. 22. a8 -4*?- 3=0. 23. la?- 8x- 3=0.

24. Express each root of x2 - 5^+ 3= as a continued fraction.

Ill
25. Find the value of 3 +5— x— x--

6+ 6+ 6+

26. Find the value of ,— -

—

1+ 3+ 1+ 3 +
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111111
1+ 2 + 3+ 1+ 2 + 3 +

1111
27. Find the value of 3+

28. Find the value of 5 + ,1+ 1+ 1+ 10 +
29. Shew that

*+ i+6+ i+ e+""~*\1+ a+ 2+ 3+ 2+ ;

30. Find the difference between the infinite continued fractions111111 111111
1+ 3+ 5+ 1+ 3+ 5+ •"' 3+ 1+ 5+ 3+ 1+ 5+ ""

*357. To convert a quadratic surd into a continuedfraction.

Let N be a positive integer which is not an exact square,

and let a
x
be the greatest integer contained in JN j then

N/iV = «, + (Jff- a,) = «, + -j£— , if r, = W- »,\

Let b be the greatest integer contained in —
' ; then

JM+a
l = b |

JN-b
x
r

x
+ a

x ^ h ,

JN-a
2 ^ h

r
i

+

where «
2
= b

i

r
1
— a

x
and r

x
r
2
=N — a„

2
.

Similarly

r
2

2 »*
2

- JN + a./

where «
3
= bf2

— a
s
and r

2
r
3
—N — a

3

2

;

and so on ; and generally

JN+a
,

. JN-a . r-— -s=i = b , + v —" = b , + ,
"

"-' jy + a '

> it

M-l
H— 1 ' (1-1

where an
= &„_,/•„_, - a„_

1

and ?•„_,*•„ = N - a/.

1111
Hence *JN= a, +

and thus JN can be expressed as an infinite continued fraction.

"We shall presently prove that this fraction consists of re-

curring periods ; it is evident that the period will begin when-
ever any complete quotient is first repeated.
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We shall call the series of quotients

JAr + a, JN + a
2

JJST+ a
JAT

.

r
x

r2 r
3

3
)

the first, second, third, fourth complete quotients.

*358. From the preceding article it appears that the quan-
tities av rv bv b , b

3
are positive integers; we shall now prove

that the quantities a
2, a3 , a4 , , r

8, r
3

, r
4
, . . . are also positive in-

tegers.

p p p
Let — , —.. —r. be three consecutive convergents to JN. and

q q q
° x

P"
let — be the convergent corresponding to the partial quotient b

n
.

The complete quotient at this stage is —
; hence

v^=
— p + p

r
, t = P JW+a„P+rvp

Clearing of fractions and equating rational and irrational

parts, we have

«y + rnP = ^Y> ck<l + r
nq =p ;

whence an ( pq - pq) =pp* ~
<Z<7

'^j rn {ptf —p<i) = A
Tq'

2 —p'2
.

But pq' —p'qssdslf and pq —pq-, pp' —qq'N, Nq 2 — p
2 have

the same sign [Art. 344] ; hence an and rn are positive integers.

Since two convergents precede the complete quotient -

r*

this investigation holds for all values of n greater than 1.

*359. To prove that the complete and partial quotients recur.

In Art. 357 we have proved that rnrn _ l
= N—a 2

. Also rn
and

r
n _ l

are positive integers ; hence an must be less than ^/JV, thus

a
n
cannot be greater than a v and therefore it cannot have any

values except 1, 2, 3, ...a
x

'

}
that is, the number of different values of

a
n cannot exceed a

x
.

Again, an+1 =rvbu -ah , that is rnbn = a
n + an+v and therefore

rnbn cannot be greater than 2a
l

; also bn is a positive integer

;

hence rn
cannot be greater than 2av Thus rn cannot have any

values except 1, 2, 3,...2a
1 ; that is, the number of different values

ofi\ cannot exceed 2ar
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Thus the complete quotient — — cannot have more than
rn

2a* different values ; that is, some one complete quotient, and
therefore all subsequent ones, must recur.

Also b
n
is the greatest integer in — — ; hence the partial

rn

quotients must also recur, and the number of partial quotients in
each cycle cannot be greater than 2a 2

']

*3G0. To prove that a, < a
u + r

n
.

We have «,_, + an = bH_1
rn_ l ;

«»_i + a«= or >?,
t,-i 5

since 6„_ l
is a positive integer

;

But N"-a;=rnrn_ l

-

i

a
i
~ a

n < rn ,

which proves the proposition.

*361. To shew that the period begins loith the second partial

quotient and terminates ivith a partial quotient double of the first.

Since, as we have seen in Art. 359, a recurrence must take

place, let us suppose that the (n+ l)
th complete quotient recurs at

the (*+ l)th ; then

a. = a , r, = r , and b. = b
;

we shall prove that

a, . =a , . rm , = r ,
, b, = b ,

.

4— 1 n — 1' »—

1

ii — 1' *—

1

ii —

1

We have

r. , r = N -a,2
' — iV — a 2 = r ,r —r . r,

;

* — i * » it H — i ii H — l *

'

v = r

Again,

a
,

_ a* 1 7 7
.-. " '

~ -b ,
— om . = zero, or an integer.

n-1
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But, by Art. 360, a
l
-a

n_ l
<.r

ii
_

x

, and a
l
-a

s_ l

<r
s_ i

; that is

a. -a. , < r '

, : therefore a ,
- aa , < r . ; hence -^ — is less

n-

1

than unity, and therefore must be zero.

Thus «,_! = «„_!, and also 6#_1 = 6
fl_i.

Hence if the (n + l)th complete quotient recurs, the ?^
th com-

plete quotient must also recur; therefore the (n- l)th complete

quotient must also recur; and so on.

This proof holds as long as n is not less than 2 [Art. 358],

hence the complete quotients recur, beginning with the second

quotient — -
. It follows therefore that the recurrence

1 r
x

begins with the second partial quotient b
x ;

we shall now shew

that it terminates with a partial quotient 2a
x

.

Let - "be the complete quotient which just precedes the

second complete quotient - when it recurs ; then —— a

1 H

ancj v l are two consecutive complete quotients ; therefore
»",

but N- a* = r, ; hence rn = 1.

Again, a
y

— aH
< ?'„, that is < 1 ; hence a

x

- an
- 0, that is

«« = «,•

Also an + a = rn bn — bn ; hence bn = 2a
i ; which establishes the

proposition.

*362. To shew that in any period the partial quotients equi-

distant from the beginning and end are equal, the last partial

quotient being excluded.

Let the last complete quotient be denoted by *—
; then

rn=l, cin = a
x ,

bn =2ar

We shall prove that

^-2
=^

2) «h-2=«3 > ^.-2= &2^

r.
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We have

r«-x = r* rH_t
=-N- a,; N - a; - r,

.

Also

»„_, + a
x

= «„_, + a
H
= rm_, &„_, = r, &„_,

;

and «,+«., = ?•,&,;

. . -=- - = 0, — oM-1 = zero, or an integer,

i

But "-' I^ <
CT

i
~ a"~ l

, that is <
a'~ a'- 1

, which is less than

unity ; thus a
2
- an_x

= • hence a,,.! = «
2 , and o,,^ = b

l
.

Similarly r
n_2

= r
2 , «„_2

= «
3 , 6„_2

- b
2 ; and so on.

*363. From the results of Arts. 3G1, 362, it appears that
when a quadratic surd v/iV

r
is converted into a continued fraction,

it must take the following form

J_ J_ J_ J_ J_ J 1_
1

&i
+ &

3
+6

3
+ °

3
+ &

2
+

°i +2a,+

*364. To obtain the penultimate convergents of the recurring

periods.

Let n be the number of partial quotients in the recurring
period ; then the penultimate convergents of the recurring periods

are the ?i
ih

, 2nth
, 3nth

,
convergents ; let these be denoted by

V-\ ^=, ^, respectively.

xt /v 111 11
Now JiV = a

l
+ i
—

j— — -— —-
v

b
i
+ b

2
+ b

3
+ b

7l
_

l

+ 2a
l
+

7)

so that the partial quotient corresponding to —+1
is 2a

t
; hence

Pn+X = ^Pn+Pn-l
SWl

" 2«1 9n + ?n-l

'

Tlie complete quotient at the same stage consists of the period

2«,+T -r : ,

b
i
+ K + 6«-i

+
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and is therefore equal to a
x

+ J'N ; hence

Clearing of fractions and equating rational and irrational

parts, we obtain

*iP.+JV-i= -jfy«i ai9,

H + 9
rn-i=^« (!)•

Again— can be obtained from — and -^ by taking for the

quotient

1 1 1
2*

1
+
V?V^ C

which is equal to rtj + — . Thus
in

& = 1 2^ = &
, from (1);

** U+%)qn + q^ P« +%.qn

?2„

. l(A + *&) (2)>

In like manner we may prove that if — - is the penultimate
icn

convergent in the cth recurring period,

«i ^c« +Fcn-i = Nqmi a, qcn + qm_l =#*,

and by using these equations, we may obtain £— , — , suc-

cessively.

It should be noticed that equation (2) holds for all multiples

of n ; thus

Ol

the proof being similar to that already given.

*365. In Art. 356, we have seen that a periodic continued

fraction can be expressed as the root of a quadratic equation

with rational coefficients.
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Conversely, we might prove by the method of Art. 357 that

an expression of the form —tt~~ > where -<4> B, C are positive

integers, and B not a perfect square, can be converted into a

recurring continued fraction. In this case the periodic part will

not usually begin with the second partial quotient, nor will

the last partial quotient be double the first.

For further information on the subject of recurring continued
fractions we refer the student to Serret's Cours cVAlgebre Supe-
rieure, and to a pamphlet on The Expression of a Quadratic Surd
as a Continued Fraction, by Thomas Muir, M.A., F.R.S.E.

^EXAMPLES. XXVII. b.

Express the following surds as continued fractious, and find the

fourth convergent to each :

1. N/a
2+ l. 2. Ja* -a. 3. N/«--l.

4. V/T7T. 5 . y«"^f . 6 . ^l
7. Prove that

J9a*+ 3=3a+ —— -i
2a + 6a + 2a + 6a +

and find the fifth convergent.

8. Shew that

2 1111 i—»—r-

p i+ p+ i+ p

9. Shew that/111 \ 111
V a \-\ =Pa \ + ——

\ P9Cl
2 + tt

3+ P9Ct
4 + / aCL

l + PaZ + OCl
\ +

10. If Ja'2 + 1 be expressed as a continued fraction, shew that

2(a*+l)qn=pn _ 1 +pn + 1 , 2pn = qn _ l + qn + l
.

11 Tf 1111
11. If .%'= — ...,

a
x + «

2 + ai+ a2 +1111
•
?/ ~2a

1
+ 2«2+ 2a

x
+ 2a

2+
""'

1111
~3tf

1
+~3a2 + 3^+ 3«2+

'"'

shew that x {f-
- z-) + 2y (z2 - .r2) + 3z {a? -

y

1
) = 0.
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12. Prove that

(
JL J_ Jl J_ V———— ^ = -
b + a+ b + a+ '")\b+ a+ b+ a+ '")"b

1 J_ J_ J_13. U X~ a+
b+ b+ a+ a+ ••'

J_ J_ J_ J_y- b + a+ a+ i+ b+ •••'

shew that (ab2+ a+ b)x- (a2b + a+ b)y = a2 -b2
.

14. If — be the nth convergent to Ja2+ l. shew that

P2
2+P3

2 +'"+P2
n + l = Pn + lPn + 2-PlP2

15. Shew that

1 1 1 \ l + bc(——\a+ b +
c +

v
a+ b + c+

'

"/ \ ^+ a + c+ / l+ctb'

16. If — denote the rih convergent to ^——— , shew that
qr

&
2

Pi+Pi>+ >~+P°.n-l=P2n-p<L, ?3+ ?5+ - + &» - 1= ?8» ~ ft.

17. Prove that the difference of the infinite continued fractions

_i_j_2_ i i i

a+ b+ c+ •' b+ a+ c+
'••'

is equal to = .

1 + ao

18. If s/JV is converted into a continued fraction, and if n is the

number of quotients in the period, shew that

19. If \/^ De converted into a continued fraction, and if the pen-

ultimate convergents in the first, second, ...kth recurring periods be

denoted by nlt n2i ...nk respectively, shew that



*CHAPTER XXVIII.

INDETERMINATE EQUATIONS OF THE SECOND DEGREE.

*366. The solution in positive integers of indeterminate
equations of a degree higher than the first, though not of much
practical importance, is interesting because of its connection with
the Theory of Numbers. In the present chapter we shall confine

our attention to equations of the second degree involving two
variables.

*367. To shew Iww to obtain the positive integral values of
x arid y which satisfy the equation

ax2 + 2hxy + by 2 + 2gx + 2fy + c = 0,

a, b, c, f, g, h being integers.

Solving this equation as a quadratic in x, as in Art. 127, we
have

ax + hy+g = ±J(h2 -ab) y
2 + 2 (hg - af)y+(g2

-ac)...(l).

Now in order that the values of x and y may be positive
integers, the expression under the radical, which we may denote
kv py

2 + 2gy + r, must be a perfect square ; that is

py
2 + 2qy + r= z

2
, suppose.

Solving this equation as a quadratic in y, we have

py + q = ± Jq
2 -jjr+pz2

;

and, as before, the expression under the radical must be a perfect
square ; suppose that it is equal to t

2
; then

t
2 - pz2 = q

2 - pr^

where t and z are variables, and j\ q, r are constants.
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Unless this equation can be solved in positive integers, the

original equation does not admit of a positive integral solution.

We shall return to this point in Art. 374.

If a, b, h are all positive, it is clear that the number of

solutions is limited, because for large values of x and y the sign

of the expression on the left depends upon that of ax2 + 2hxy + by2

[Art. 2G9], and thus cannot be zero for large positive integral

values of x and y.

Again, if h* — ab is negative, the coefficient of y
2
in (1) is

negative, and by similar reasoning we see that the number of

solutions is limited.

Example. Solve in positive integers the equation

a;
2 - 4xy + &y* - 2x - 20*/ = 29.

Solving as a quadratic in x, we have

x= 2y + 1 ± ^30 + 24// - 2y\

But 30 + 24?/ - 2j/
2= 102 - 2 (y - G) 2

; hence (y - 6)
2 cannot be greater than

51. By trial we find that the expression under the radical becomes a

perfect square when (y-6)8=l or 49; thus the positive integral values of y
are 5, 7, 13.

When ?/= 5, x = 21 or 1; when y = 7, x = 25 or 5; when y = 13,

x = 29 or 25.

*3G8. We have seen that the solution in positive integers

of the equation

ax 2 + 2hxy + by
2 + 2gx + 2fy + c =

can be made to depend upon the solution of an equation of the

form

x2 ± Ny2 = ± a,

where iV* and a are positive integers.

The equation x2 + Ny* = — a has no real roots, whilst the

equation x2 + Ny2 = a has a limited number of solutions, which

may be found by trial ; we shall therefore confine our attention

to equations of the form x2 - Ny2 = ± a.

*369. To sJiew that the equation x2 -Ny 2 =l can always be

solved in positive integers.

Let JN be converted hito a continued fraction, and let

2_ l- '— be any three consecutive convergents; suppose that

q q 9



INDETERMINATE EQUATIONS OF THE SECOND DEGREE. 305

t 17" a,/ ,n
is the complete quotient corresponding to „ ; then

*. (/"/ ~ V'q) W -P"
2

[Art. 358].

But r„ = 1 at the end of any period [Art. .'3(51]

.. ]> — JVq " ] } (1 — ] )(2 )

/

, being the penultimate convergent of any recurring period.

If the number of quotients in the period is even, -, i.s an even

convergent, and is therefore greater than v/iV, and therefore

P
greater than ; thus pq —pq = 1. Jn this case p'* — N"q'

a= J,

and therefore x=]>\ y = q is a solution of the equation xr — Ny* = 1.

p
Since — is the penultimate convergent of any recurring

period, the number of solutions is unlimited.

If the number of quotients in the period is odd, the penultima 1

1

convergent in the tirst period is an odd convergent, but the
penultimate convergent in the second period is an even convergent.
Thus integral solutions will be obtained by putting x=p', y — q\

where — is the penultimate convergent in the second, fourth,
q

sixth, recurring periods. Hence also in this case the number
of solutions is unlimited.

*370. To obtain a solution, in positive inte<iers of the equation

As in the preceding article, we have
f£ ~KT '2 ' I

v -Jq =pq-pq>

If the number of quotients in the period is odd, and if

<1

>

is an odd penultimate convergent in any recurring period, -,-<-,

and therefore pq —pq ' — — 1.

In this case p'2 — Nq 2 - -\, and integral solutions of the
equation x2 — X

y

1 = — 1 will be obtained by putting x =p\ y — q
',

where — is the penultimate convergent in the first, third, fifth...

q
recurring periods.

,, „ nappeu i.H.10 we can discover
, irv

11. n. A. 1:0

2fc—

U
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Example. Solve in positive integers x2 - 13y 2 = ±1.

We can shew that

11111
^13-3 + 1+ 1+ITl+ 6+

Here the number of quotients in the period is odd ; the penultimate con-

18
vergent in the first period is -=- ; hence a;= 18, y = o is a solution of

x2 -13y 2 =-l.

By Art. 364, the penultimate convergent in the second recurring period is

1 /18 5 io\ ,u * •
649

2U +
18

Xl3
J'

thatlS'180'

hence #= 649, y = 180 is a solution of x2 - 13y2 =l.

By forming the successive penultimate convei'gents of the recurring

periods we can obtain any number of solutions of the equations

x2 - 13?/
2= - 1, and x2 - lSy2= + 1.

*371. When one solution in positive integers of x2 — Nif = 1

lias been found, we may obtain as many as wre please by th

following method.

Suppose that x = h, y =k is a solution, h and k being positive

integers; then (A
2 — Nk2

)

n = 1 , where n is any positive integer.

Thus x2 -Ni/= (h* - m?y .

. •. (x + yjN) (x - yJJST) = (h + kJN) n
(h - k s!X)\

Put x + yJN = (h + kJX)'
1

, x-yJN = (h - kJN)" ;

.-. 2x = (h + kJN) n + (h-kJJYy;

2Usin = (h + kjiry - (h - kjNy.

Tlie values of x and y so found are positive integers, and by
ascribing to n the values 1, 2, 3,..., as many solutions as we please

can be obtained.

Similarly if x= h
i y= k is a solution of the equation

x2 — Xy2 = — 1, and if n is any odd positive integer,

x* - Ntf = (h
2 - Nk2

)\

Thus the values of x and y are the same as already found, but
n is restricted to the values 1, 3, 5,

*372. By putting x = ax', y = ay the equations x2 — Ny2 — ± a3

become of
2 — IFyf* = d= 1, which we have already shewn how to

solve.
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*373. We have seen in Art. 3G9 that

P
n ~ N(f~ = ~ rn ( V<1 ~ V<l) =* r..

Hence if a is a denominator of any complete quotient which

occurs in converting JX into a continued fraction, and if — is

i •
q

the convergent obtained by stopping short of this complete
quotient, one of the equations x~ — Xy2 — ±a is satisfied by the
values x =p\ y = q'-

Again, the odd convergents are all less than JN, and the

even convergents are all greater than JX ; hence if —, is an even
<2

t

convergent, x=p, y = q is a solution of x* -Xif'
— a: and if —.

q
is an odd convergent, x =p , y — q is a solution of Xs — Xy2 = — a.

*374. Tlie method explained in the preceding article enables
us to find a solution of one of the equations x2 — Xy2 — ±a only

when a is one of the denominators which occurs in the process of

converting JX into a continued fraction. For example, if Ave

convert J7 into a continued fraction, we shall find that

and that the denominators of the complete quotients are 3, 2, 3, 1.

The successive convergents are

2 3 5 8 37 45 82 127

1' 1' 2' 3' IT 17' 31' 18 ' ;

and if we take the cycle of equations

2 I" 2 O 2 *" 2 CI o f o o o h' 2 1x - ty = — 3, ar — Iff = 2, ar — 7^= — 3, cc - / y = 1

,

we shall find that they are satisfied by taking

for x the values 2, 3, 5, 8, 37, 45, 82, 127,

and iovy the values 1, 1, 2, 3, 14, 17, 31, 48,

*375. It thus appears that the number of cases in which solu-

tions in integers of the equations x2 — Xy2 = ± a can be obtained

with certainty is very limited. In a numerical example it may,
however, sometimes happen that we can discover by trial a

20—2
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positive integral solution of the equations x2 — Ny 2 = =*= a, when a
is not one of the above mentioned denominators ; thus we easily

find that the equation #2 -7?/2 = 53 is satisfied by y=2, # = 9.

When one solution in integers has been found, any number of

solutions may be obtained as explained in the next article.

*376. Suppose that x =f, y = g is a solution of the equation

x2 _ Ny2 = a ; and let x = h, y - k be any solution of the equation

x2 - JSfy
2 = 1 ; then

x* ~ Ny2 = (f
2 - Kg2

)
(h

2 - Nk2

)

= (fh±Ngk) 2 -N{fk±gh)\

By putting x -fh ± Kgk, y -fk ± gh,

and ascribing to h, k their values found as explained in Art. 371,

we may obtain any number of solutions.

*377. Hitherto it has been supposed that N is not a perfect

square ; if, however, N is a perfect square the equation takes the

form x2 - n2

y
2 = a, which may be readily solved as follows.

Suppose that a = be, where b and c are two positive integers,

of which b is the greater ; then

(x + ny) (x — ny) = be.

Put x + ny = b, x - ny = c ; if the values of x and y found

from these equations are integers we have obtained one solution

of the equation ; the remaining solutions may be obtained by
ascribing to b and c all their possible values.

Example. Find two positive integers the difference of whose squares is

equal to 60.

Let x, y be the two integers ; then ,xr - y
2= 60 ; that is, (as + y) (x - y) = 60.

Now 60 is the product of any of the pair of factors

1,60; 2,30; 3,20; 4,15; 5,12; 6,10;

and the values required are obtained from the equations

ic + y= 30, # + y= 10,

x-y= 2; x-y= 6;

the other equations giving fractional values of x and y.

Thus the numbers are 16, 14; or 8, 2.
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Cor. In like manner we may obtain the solution in positive

integers of

ax' + 2hxy + by
1 + %jx + *2/'y + c = k,

if the left-hand member can be resolved into two rational linear

factors.

*378. If in the general equation a, or b, or both, are zero,

instead of employing the method explained in Art. 3G7 it is

simpler to proceed as in the following example.

Example. Solve in positive integers

2.ry - 4a-
2 + V2x - 5y = 11

.

Expressing y in terms of x, we have

4a;2 - 12* + 11 „ , 6
V=—^r-r— =2tf-l+;

2x - 5 2x - 5
n

In order that y may be an integer = must be an integer ; hence 2.r - 5
2iX — O

must be equal to ± 1, or ± 2, or ± 3, or ± G.

The cases ±2, ±6 may clearly be rejected; hence the admissible values

of x are obtained from 2x - 5 = ± 1, 2x - 5 = ± 3

;

whence the values of .x- are 3, 2, 4, 1.

Taking these values in succession we obtain the solutions

x = S, y= ll; s=2, y = -3; #= 4, ?/ = 9; ar=l, y= -1;

and therefore the admissible solutions are

a; = 3, y = 11; x = 4, y = 9.

*379. The principles already explained enable us to discover

for what values of the variables given linear or quadratic

functions of x and y become perfect squares. Problems of this

kind are sometimes called DiopJiantine Problems because they

were first investigated by the Greek mathematician Diophantus

about the middle of the fourth century.

Example 1. Find the general expressions for two positive integers which
are such that if their product is taken from the sum of their squares the

difference is a perfect square.

Denote the integers by x and y ; then

x- -xy + y'2= z'
2 suppose

;

.-. x(x-y) = z
2 -y-.

This equation is satisfied by the suppositions

mx= n {z + y), n (x -y) = m (z - y),

where m and n are positive integers.
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Hence mx - ny - nz = 0, nx + (m -n)y- mz- 0.

From these equations we obtain by cross multiplication

x _ V 2
.

2mn - ri2 m2 - n2 m2 - mn + ri1
'

and since the given equation is homogeneous we may take for the general

solution

x= 2mn-n2
, y =m2 -n 2

, z = m2 -vin + n2
.

Here m and n are any two positive integers, »i being the greater; thus if

?n= 7, n = 4, we have
x = ±0, y = SS, 3= 37.

Example 2. Find the general expression for three positive integers in

arithmetic progression, and such that the sum of every two is a perfect

square.

Denote the integers by x-y, x, x + y; and let

2x-y=p2
, 2x= q

2
, 2x + y= r2

;

then p
2 + r2= 2q2

,

or i*-q*=q*-p>.

This equation is satisfied by the suppositions,

m (r - q) = n (q - j>), n (r + q) = m (q +p),

where m and n are positive integers.

From these equations we obtain by cross multiplication

V = <l _ r

w2 +2mn-m2 m2 + n2 m2 + 2mn- n2
'

Hence we may take for the general solution

p=n*+ 2mn-m*, q = m2 + n 2
, r = )u

2 + 2mn-u2
;

whence x = = {m2 + w2
)

2
, y = inin (m2 - w2)

,

and the three integers can be found.

From the value of x it is clear that m and n are either both even or both
odd ; also their values must be such that x is greater than y, that is,

(m2 + n 2
)

2 >8mn{m2 -n 2
),

or mz(m - Sn) + 2inn2 + 8mn* + n4 > ;

which condition is satisfied if m>Sn.

If m= 9, w=l, then a- = 3362, y =2880, and the numbers are 482, 33G2,

6242. The sums of these taken in pairs are 3844, 6724, 9604, which are the

squares of 62, 82, 98 respectively.
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*EXAMPLES. XXVIII.

Solve in positive integers

:

1. 5a-2 -10.iv/ + 7?/
2= 77. 2. 7^-2^+3y2=27.

3. y2 -4.ry + 5.r2 -10.i-= 4. 4. xy - 2.v - y = S.

5. 3.y+ 3.ry-4j/= 14. 6. 4^2 -y2 =315.

Find the smallest solution in positive integers of

7. .r
2 -14y2 =l. 8. ^-19^=1. 9. .t-

2 = 4iy2 -l.

10. x2 - 61/+ 5 = 0. 11. x2 -7y2 -9 = 0.

Find the general solution in positive integers of

12. .r
2 -3/=l. 13. x2 -5y2 =l. 14. .v

2 - 17y2 = - 1.

Find the general values of x and y which make each of the following

expressions a perfect square :

15. x2 -3xy + 3y2
. 16. afi+2xy+ 2f. 17. 5^+y2

.

18. Find two positive integers such that the square of one exceeds

the square of the other by 105.

19. Find a general formula for three integers which may be taken

to represent the lengths of the sides of a right-angled triangle.

20. Find a general formula to express two positive integers which
are such that the result obtained by adding their product to the sum
of their squares is a perfect square.

21. " There came three Dutchmen of my acquaintance to see me,
being lately married ; they brought their wives with them. The men's
names were Hendriek, Claas, and Cornelius; the women's Geertruij,

Catriin, and Anna : but I forgot the name of each man's wife. They
told me they had been at market to buy hogs ; each person bought as

many hogs as they gave shillings for one hog; Hendriek bought 23 hogs

more than Catriin; and Claas bought 11 more than Geertruij ; likewise,

each man laid out 3 guineas more than his wife. I desire to know the

name of each man's wife." (Miscellany of Mathematical Problems, 1743.)

22. Shew that the sum of the first n natural numbers is a perfect

square, if n is equal to k2 or k'2 - 1, where k is the numerator of an odd,

and k' the numerator of an even convergent to N^2.



CHAPTER XXIX.

SUMMATION OF SERIES.

380. Examples of summation of certain series have occurred

in previous chapters ; it will be convenient here to give a

synopsis of the methods of summation which have already been

explained.

(i) Arithmetical Progression, Chap. IV.

(ii) Geometrical Progression, Chap. Y.

(iii) Series which are partly arithmetical and partly geo-

metrical, Art. 60.

(iv) Sums of the powers of the Natural Numbers and allied

Series, Arts. 68 to 75.

(v) Summation by means of Undetermined Coefficients,

Art. 312.

(vi) Recurring Series, Chap. XXIY.

We now proceed to discuss methods of greater generality
;

but in the course of the present chapter it will be seen that some

of the foregoing methods may still be usefully employed.

381. If the rth term of a series can be expressed as the dif-

ference of two quantities one of which is the same function of r

that the other is of r - 1 , the sum of the series may be readily

found.

For let the series be denoted by

and its sum by S , and suppose that any term u
r
can be put in

the form v
r
-v

r_ 1 ; then

^.=(«i-0+(w.-«i)+(*.-«f) + »- + (
w.-i-0

!

+(*.- ,,--i)

= v - v n .
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Example. Sum to n terms the series

1 1 1
+ U . »„v„ . n T + „ . , . +

(l + s)(l+2s) (l + 2u-)(l + 3.r) (l + 3j-)(l + 4ar)

If we denote the series by

*-±(—-—\
- a;\l + 2x 1 + 3*/'

_!/ 1 1 \
Ws

a;\l + 3# 1 + 4*,/
'

x\l + nx i+n+ i.x/

b}' addition, SL=-
I

^ —
I

ar\l + a; l +w + l.a?/

n

(1 + x) (1 + n + l ..r)

382. Sometimes a suitable transformation may be obtained

by separating u into partial fractions by the methods explained

in Chap. XXIII.

Example. Find the sum of

1 a a2

+ n, x~n z~r + t-, ., > ,, 5—
v + . . . to n terms.

(l + x)(l + ax) (l + ax)(l+a*x) (1 + a-x) (1 + a 3x)

nu, ft* «n_1 A B
The nth term= —

n . w ,
— = —.t- + — suppose:

{l + an
-1x)(l + anx) l + a"- 1^ l + anx **

.'. an
~ x-A (1+ a**) + B (1 + a7'- 1

*).

By putting 1 + «" _1 .r, 1 + aux equal to zero in succession, we obtain

an-l nn
A=- , B= —

1 -a' 1 -a'

1/1 a
Hence u, = —

1
1 - a \1 + a: 1 + axJ

.... 1 / a a 2 \
similarly, t**=; , — -5— 5 .

1 / a"- 1 aw \
Wn~l-a Vl+a*" 1* l + anj/

'"• *~l-o\l+ * l + anx)'
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383. To jind the sum of\\ terms of a series each term of which
is composed of r factors in arithmetical progression, the firstfactors

of the several terms being in the same arithmetical progression.

Let the series be denoted by u
x + u2 + us + + un ,

where

u„ - (a + nb) (a + n + 1 . b) (a + n + 2 . b) ... (a + n + r — 1 . b).

Replacing n by n— 1, we have

«„ ! = (a + n — 1 . &) (a + nb) (a + n + 1 . 6) . .. (a + n + r — 2 . b)

;

k»-i

.'. (« + ?i — 1 . b) un = (a + n + /• — 1 . b) ?.«.„_! = vn , say.

Replacing n by n + 1 we have

(a + w + r. 6)tf»= «Il+1 j

therefore, by subtraction,

(r+l)b . un= vn+i-vn .

Similarly, (7+1)6. wB_, = r
/(
- /<„_,,



SUMMATION OF SERIES. 315

Example. Find the sum of n terms of the series

1.3.5+3.5.7+5.7.9+
The nth term is {2n - 1) (2« + 1) (2n + 3) ; hence by the rule

- _ (2w-l)(2n + l)(2n + 3)(2n+5)
, n>\- ^ +C7.

To determine C, put n = 1 ; then the series reduces to its first term, and

we have 15 = —-—
-j

—

:—f- C ; whence C =— ;8 8

(2n-l)(2n+l)(2n+3)(2n+5) 15
•'• S*~ 8 + 8"

= n (2n3 + 8«2 + In - 2), after reduction.

384. The sum of the series in the preceding article may
also be found either by the method of Undetermined Coefficients

[Art. 312] or in the following manner.

We have un
= (2w - 1) (2w + 1) (2w + 3) = $n3 + 12>i

2 - 2m - 3;

. \ Sm = 82?i
3 + 122^ 2 - 22m - 3m,

using the notation of Art. 70
;

. \SU
= 2m2 (m + l)

2 + 2m (n + 1) (2n + 1) - n (n + 1) - 3m

= w(2m3 + 8m2 + 7?i-2).

385. It should be noticed that the rule given in Art. 383 is

only applicable to cases in which the factors of each term form an
arithmetical progression, and the first factors of the several terms

are in the same arithmetical progression.

Thus the sum of the series

1.3. 5 + 2.4. 6 + 3.5. 7 + to n terms,

may be found by either of the methods suggested in the preceding
article, but not directly by the rule of Art. 383. Here

u
n
= n (m + 2) (m + 4) - n (m +1 + 1 )

(m + 2 + 2)

= n{n+ l)(™ + 2) + 2n(n+ \) + u(a + '2) + 2/4

= n (m + 1) (m + 2) + 3m (n + 1) + 3m.

The rule can now be applied to each term ; thus

S
n
= \n (m+ 1) (m + 2)(m + 3) +n (n+ 1) (m + 2) + |« (»+ 1) + C

\ )> (r h l)(/r»-l) (» + 5), the constant being zero.
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386. To find the sum of\\ terms of a series each term of which

is composed of the reciprocal of the product of r factors in arith-

metical progression, the first factors of the several terms being in

tlie same arithmetical progression.

Let the series be denoted by u
x
+ it, + u

:i
+ + un ,

where

— = (a + nb) (a + n + 1 . b) (a + n + 2 . b) (a + n + r-l .b).
4iUn

M„_i

Replacing n by n - 1,

— = (a + n - 1 . b) (a + nb) (a + n + 1 . b) ...(a + n + r—2 . b)

;

ln-l

.'. (a + n + r-l . b) un = (a + n - 1 . b) un_x = vni say.

Replacing n by n + 1, we have

(a+nb)un = vn+1 ;

therefore, by subtraction,

(r-l)b. un = vn -vn+1 ,

Similarly (r - 1) b . un_x
= v

ll _ l
- vn ,

(r — l)b . u.2 = v.2
— vSt

(r— 1) b . Wj = v
x

— v.2 .

By addition, (r — 1) b . Sn = vx
— vn+1 ;

, , ,
. Q ^i - ?W _ r _ (

a + nb) un
tnatis

*"-(r-l)6~
U

(r-l)6 '

where C is a quantity independent of n, which may be found by

ascribing to n some particular value.

Thus Sn = C- ,

*
. = -

,
.

(r-l)6 (a + n+L.b)... (a + n + r-l. b)

Hence the sum may be found by the following rule :

Write doivn the nth term, strike offa factor from the beginning,

divide by the number offactors so diminished and by the common
difference, change the sign and add a constant.

The value of C= -, Vv~7 = t tti ui
'> but ** is advisable in

(r — 1) o (r — 1) 6

each case to determine C by ascribing to n some particular value.
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Example 1. Find the sum of re terms of the series

The re'
1
' term is -

1.2.3.4 + 2.3.4.5 + 3.4.5.6 +

1

»(n+ l)(n+ 2)(n+ 3)'

hence, hy the rule, we have

3(n+l)(w+ 2)(»+ 3)

rut »=1, then ^=0-3^; whence (7=1;

• 5
X *

" 18 3(re + l)(re + 2)(re + 3)

By making n indefinitely great, we obtain fi^ =—

.

Example 2. Find the sum to n terms of the series

3 4 5
+ a—T7—- + rt—r—5 +1.2.42.3.5 3.4.6

Here the rule is not directly applicable, because although 1,2,3, ,

the first factors of the several denominators, are in arithmetical progression,

the factors of any one denominator are not. In this example we may
proceed as follows

:

n + 2 (n+2)2

" re(re+l)(re + 3) n{n+l) (n + 2) (re + 3)

re (re 4-1) + 3re + 4
:

re(re + l)(re + 2)(re + 3)"

1 3

(re+ 2)(w + 3) (re + l)(re + 2)(re + 3) w(re+l)(n + 2)(re + 3)'

Each of these expressions may now be taken as the ?i
th term of a series

to which the rule is applicable.

• S -c l 3 4

n + S 2(re + 2)(re + 3) 3 (re+ 1) (re + 2) (re + 3)
'

put re=l, then3-13 4 29

17271= C "4 " 27174 " 372.3 .4'
Whence C=

36 ;

_29 1 3 4
n 36 re + 3 2 (re + 2) (re + 3) 3 (re + 1) (re + 2) (re + 3)'
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387. In cases where the methods of Arts. 383, 386 are directly

applicable, instead of quoting the rules we may always effect the

summation in the following way, which is sometimes called ' the

Method of Subtraction.'

Example. Find the sum of n terms of the series

2.5 + 5.8 + 8.11 + 11.14+

The arithmetical progression in this case is

2, 5,8, 11, 14,

In each term of the given series introduce as a new factor the next term

of the arithmetical progression ; denote this series by &", and the given series

by S; then

S' = 2. 5. 8 + 5. 8. 11 + 8. 11. 14+ +(3w-l)(3n+2)(3»+5);

.-. £'-2.5.8= 5.8.11 + 8. 11.14 + 11. 14.17+... to (u-1) terms.

By subtraction,

_2.5.8=9[5.8+ 8.11 + 11.14+...to(»-l)terms]-(3n-l)(3n+2)(3n+5),

- 2 . 5 . 8 = 9 [S - 2 . 5] - (3/i - 1) (3n+2) (3n+5),

9S = (3/i - 1) (3/i + 2) (3/i + 5) -2. 5. 8 + 2, 5.0,

fif=n(3n3+6n+l).

388. When the nth term of a series is a rational integral

function of n it can be expressed in a form which will enable us

readily to apply the method given in Art. 383.

For suppose <j> (n) is a rational integral function of n of p
dimensions, and assume

cf)(n) = A +Bn+ Cti(n + 1) +B)i(u+ l)(n + 2)+ ,

where A, JB, C, D, are undetermined constants p + l in

number.

This identity being true for all values of n, we may equate

the coefficients of like powers of n; we thus obtain ^> + 1 simple

equations to determine the p + 1 constants.

Example. Find the sum of n terms of the series whose general term is

n*+6n3+ 5w2.

Assume

7i
4 + 6/i3 + 5/t

2=A +Bn+ Gn [n + 1) + Dn [n + 1) (n + 2) + En (n + 1) (n + 2) (w + 3)

;

it is at once obvious that ,4=0, 2? = 0, E= 1 ; and by putting n= - 2, n = - 3

successively, we obtain C= - 6, J) = 0. Thus

«4 + 6» 3 + 5/< 2 =//(n + l) (n+2) (?i + 3)-6/t(/i + l).
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Hence Sn= s n (/t + l)(» + 2)(n + 3)(?i + 4) - 2n(n+ l)(n+ 2)
o

= \n(n+l)(n+2){n'i + 7n + 2).
o

Polygonal and Figurate Numbers.
•

389. If in the expression n+ \n(n— l)b, which is the sum
of n terms of an arithmetical progression whose first term is 1

and common difference b, we give to b the values 0, 1, 2, 3,

we get
•>

n j
u, \n (n + 1), n*

s
\n (Bn — 1)

which are the uih terms of the Polygonal Numbers of the second,

third, fourth, fifth, orders; the first order being that in which
each term is unity. The polygonal numbers of the second, third,

fourth, fifth, orders are sometimes called linear, triangular

square, pentagonal)

390. To find the sum of the first n terms of the rth order of
j>olygonal numbers.

The nih term of the rtb order is n + \n (n - 1) (r — 2);

.-. $
i

=$n + l(r-2)%(n-l)u

= \n (n + 1) + 1 (r -2)(n-l) n (n + 1) [Art. 383]

= in(n + l){(r-2)(n-l) + $}.

391. If the sum of n terms of the series

1, 1, 1, 1,1, ,

be taken as the ?*
th term of a new series, we obtain

1,2,3,4,5,

n in + 1

)

If again we take — , which is the sum of n terms of the
-j

last series, as the ?t
th term of a new series, we obtain

1, 3, 6, 10, 15,

By proceeding in this way, we obtain a succession of series

such that in any one, the nih term is the sum of n terms of the

preceding series. The successive series thus formed are known
as Figurate Numbers of the first, second, third, ... orders.
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392. To find the nth term and the sum of n terms of ilie rth

order offigurate numbers.

The nih term of the first order is 1; the nth term of the

second order is n; the nth term of the third order is Hn, that is

\n (n + 1); the ntYl term of the fourth order is 2 "V >
tnat is

1 . 2

n(n+l)(n+2) ..
tIl , , . . ~M , . ^ n(n+l) (n+2)

-— L± '- • the uth term of the fifth order is 2, —*-=—^5 ,

1.2.3 1 . 2 . o

xl . w(w+l)(n + 2)(M + 3)
that is —2 ^-n—— ; and so on.

4

Tims it is easy to see that the nth term of the rth order is

w(?*+l )(w + 2)...(n + r-2)
i

|rc+r-2
. 01

r-1 n — 1 I r — 1

A«rain, the sum of n terms of the rth order is

n (n + 1) (n + 2) . . . (w + r - 1)

which is the wth term of tlie (r + l) th order.

Note. In applying the rule of Art. 383 to find the sum of n terms of

any order of figurate numbers, it will be found that the constant is always

zero.

393. The properties of figurate numbers are historically

interesting on account of the use made of them by Pascal in

his Traite du triangle arithmetique, published in 1665.

The following table exhibits the Arithmetical Triangle in its

simplest form

1 ...1 1
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Pascal constructed the numbers in the triangle by the follow-

ing rule :

Each number is the sum of that immediately above it and that

immediately to the left of it;

thus 15 = 5 + 10, 28 = 7 + 21, 126 = 56 + 70.

From the mode of construction, it follows that the numbers in

the successive horizontal rows, or vertical columns, are the hgurate
numbers of the first, second, third, . . . orders.

A line drawn so as to cut off an equal number of units from
the top row and the left-hand column is called a base, and the

bases are numbered beginning from the top left-hand corner.

Thus the 6th base is a line drawn through the numbers 1, 5, 10,

10, 5, 1 ; and it will be observed that there are six of these num-
bers, and that they are the coefficients of the terms in the ex-

pansion of (1 + x)
5

.

The properties of these numbers were discussed by Pascal
with great skill : in particular he used his Arithmetical Trianyle
to develop the theory of Combinations, and to establish some
interesting propositions in Probability. The subject is fully

treated in Todhunter's History of Probability, Chapter n.

304. "Where no ambiguity exists as to the number of terms

in a series, we have used the symbol % to indicate summation

;

but in some cases the following modified notation, which indicates

the limits between which the summation is to be effected, will be
found more convenient.

Let cf> (x) be any function of x, then 2
<f>

(x) denotes the sum
x=l

of the series of terms obtained from
<f>

(x) by giving to x all posi-

tive integral values from I to m inclusive.'a 1

For instance, suppose it is required to find the sum of all the

terms of the series obtained from the expression

(p-l)(p-2)...(p-r)

by giving to p all integral values from r + 1 to j> inclusive.

H.H. A. 21
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Writing the factors of the numerator in ascending order,

.
*=* (p - r) (p - r + 1) ... (p - 1)

the required sum = 2 — —- —

= i{1.2.3....r+2.SA....(r+l)+...+(p-r)(p-r+l)...(p-l)}

=l (p-r)(p-r + l) „(p-l)p
[Art. 383.]

\r r + 1
L J

=
y~(-l)(y-2)...(^-r)

jr+1
i

Since the given expression is zero for all values of p from 1 to

r inclusive, we may write the result in the form

%p (p-l)
(p-2) •(p- r) _ p(p-l) (ff-2) ...(p-r)

v-\ \r
|

r +

1

EXAMPLES. XXIX. a.

Sum the following series to n terms :

1. 1.2.3 + 2.3.4 + 3.4.5 +

2. 1.2.3.4 + 2.3.4.5 + 3.4.5.6 +

3. 1.4.7 + 4.7.10 + 7.10.13 +

4. 1.4.7 + 2.5.8 + 3.6.9 +

5. 1.5.9 + 2.6.10+ 3.7.11 +

Sum the following series to n terms and to infinity :

I 1 1

1.2^2.3 3.4^

II 1
7

' 174 + 4.

7

+
77l0

+

1 1 1_

1.3.5
+ 3.5.7

+
5.7.9

+

1 1_ 1

1.4.7
+
4.7.10

+
7.10.13

+

4 5 6
10 1 1- - 4-

1.2.3^2.3.4 .3.4.5^

11 J_ _1_ _JL
* 3.4.5

+
4.5.6 + 5.6.7

+ *""'

io 1 3 5 7
\9, ———

-l
—

i u
1.2.3 2.3.4 3.4.5 4.5.6



SUMMATION OF SERIES. 323

Find the sum of n terms of the series :

13. 1 ,3.22+2.4.3a+3.5.4*+

14. (?i
2 -l 2

) + 2<>2 -22
) + 3(>2 -32

) +

Find the sum of n terms of the series whose na term is

15. »*(»*- 1). 16. (n* + DR + 4)(n2+ 5n + H).

?i
2

(?i'
2 -l) ?*

4 + 2/> 3 + h2 -1
17. A 9 i • *&• v, •

4w2 -l u- + /i

1Q n*+3n?+2n+2 7i*+n2+ l
iy. ., _ . zu. ,

n* + 2)i iv + n

21. Shew that the ?i
th term of the rth order of figurate numbers is

equal to the r
th term of the n tXx order.

22. If the nth term of the rth order of figurate numbers is equal to

the (n + 2)
th term of the (>-2)th order, shew that r=n+%

23. Shew that the sum of the first n of all the sets of polygonal

numbers from the linear to that of the ?
,th order inclusive is

{r-\)n(n + \), „ oN

Summation by the Method of Differences.

395. Let un denote some rational integral function of », and
let Mj, u.2 , w 3 , tt4,... denote the values of un when for n the values

1 , 2, 3, 4, . . . are written successively.

We proceed to investigate a method of finding un when a

certain number of the terms u
x , u.2 , w3 , u4 ,... are given.

From the series u
x , u 2 , u 3 , uA , u5 ,... obtain a second series

by subtracting each term from the term which immediately

follows it.

The series

u.2 — w,, us -u.2 , u4
— u3 , u5 -u4 ,...

thus found is called the series of the first order of differences, and
may be conveniently denoted by

Aw,, &u~ &uA , At*4,...

By subtracting each term of this series from the term that

immediately follows it, wre have

Am.,- A?*,, Attg — Awg, Aw4— Awj,...

which may be called the series of the second order of differences,

and denoted by
A../',, A.,?'.,, AjWg,...
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From this series we may proceed to form the series of the

third, fourth, fifth,... orders of differences, the general terms of

these series being A3ur , AAur , A 5?tr) ... respectively.

From the law of formation of the series

Uj
t

u.2 , u 3 , u±, u5 , u6 ,

Attj, Au.2 , Au3 , Aw4 , Au5 ,

A.y^ , A2w2 , A.m3 , A2ui ,

.
A 3Wj, A3u,, A

3u3 ,

it appears that any term in any series is equal to the term
immediately preceding it added to the term below it on the left.

Thus u.2 = «j 4- Auly and Ait.2 = Aui
+ A.m^ .

By addition, since u.2 + Au.2 = u3
we have

ii.j = t^ + 2Au ± + A.2ux
.

In an exactly similar manner by using the second, third, and
fourth series in place of the first, second, and third, we obtain

Au3
= Au

x + 2A.2u1 + A^.

By addition, since u3 + Au3
= u4i we have

?f4 - u
x
+ ZAu

x + SA^ + A^ .

So far as we have proceeded, the numerical coefficients follow

the same law as those of the Binomial theorem. We shall now
prove by induction that this will always be the case. For sup-

pose that

un+i = «i + mAmj + v

9
A,u

l
+ ... + "CVA^j + + AnWj i

X -J

then by using the second to the (n + 2)
th

series in the place of the
first to the (n + l)

th
series, we have

it (11 — 1

)

Aun+1 = A%! + nA.2u
}

+ -A.—jr-f- A 3Wj + . . . + BCf

r_1A^w1 + . . . + An^uY .

By addition, since un+l + Aun+1 = un+2i we obtain

M»+a = Mj + fa + 1) Awj + . . . + (
nCr + *Gr_j) A rux + ...+ A„+1«,

.
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But *Cr + HJr-i - (—^ + l) x »Cr_ x
= ?i±i x "C,,.,

(n + l)w(w-l) ...(w+l-r+1) _
1.2. 3... (r-l)r

Hence if tlie law of formation holds for un+l it also holds for

f£n+8 , hut it is true in the case of w4 , therefore it holds for urn and
therefore universally. Hence

, 1X . (w-l)(w-2) .

"„ = Ui + (n - 1) A?^ + —£*_ * A 2?^ + ... + An.iWi.

39G. To find the sum of w terms of the series

in terms of the differences of ul .

Suppose the series u^, u.2 , u3 ,... is the first order of differences

of the series

Vl, v.2) v3 , v4 ,...,

then vn+1 = (vn+1 - vn) + (vn - vn_t) + ... + (v2 - v
x ) + v

x
identically

;

•
'• ^»+l = u a + un-l + •• + u2 + u\ + v

l
•

Hence in the series

0, va1 v3i v4 , v5

1

)

2

)

3 J 4 J

Aw1? Aw2 , Aw3

the law of formation is the same as in the preceding article;

•' «»+i = + «Wi + -4—s— Awx + . . . + A„?^
;

that is, Wj + w3 + uz + ... + un

n (n—\)
t

n(n—l)(n-2)
>- nu

x +—y

—r— AWj + -— -^ A 2M! + . . . + A„?f ,

.

The formula) of this and the preceding article may be ex-

pressed in a slightly different form, as follows : if a is the first

term of a given series, (I
x , d2 , d3 ,... the first terms of the suc-

cessive orders of differences, the nth term of the given series is

obtained from the formula
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and the sum of n terras is

^i"^" 1 )^
,

»(»-l)("- 2
)

f/

n(»-l)(tt-a)(n-3)

2 j3 4

Example. Find the general term and the sum of ?* terms of the series

12, 40,90, 168, 280, 432,

The successive orders of difference are

28, 50, 78, 112, 152,

22, 28, 34, 40,

6, 6, 6,

0, 0,...

,c ™, ,x 22(re-l)(re-2) 6 (re- 1) (re- 2) (re -3)
Hence the nth term = 12 + 28 (re - 1) +—K- ~P ' + -v M M -

'

l± II
= ?i

3 + 5re2 + 6>t.

The sum of n terms may now be found by writing down the value of

2re3 + 52re2 + 62re. Or we may use the formula of the present article and

obtain S^ia^28"'"- 1
' +

22"'"- 1)("- 2
» + «M»-D (»-2) (-8)

= ^(3re2 + 26re + 69re + 46),

= in(re+l)(3n2 + 23re + 46).

397. It will be seen that this method of summation will only

succeed when the series is such that in forming the orders of

differences we eventually come to a series in which all the terms

are equal. This will always be the case if the nth term of the

series is a rational integral function of n.^» j

For simplicity we will consider a function of three dimensions;

the method of proof, however, is perfectly general.

Let the series be

u. + ua + ua + + u +u .,+u . „ + u , „ +
1 2 3 ii n + \ n+2 u + 3

where u = An3 + Bn2 + Cn + D.
"

and let v , w , % denote the ?i
th term of the first, second, third

n' ii* ii * *

orders of differences;
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then v
h

- m
m+1
—un

= A(3n* + 3n+ l) + 2?(2» + 1) +C:

that is, v
n
= 3Au 2 + (3A + 2B) n + A + 11 + C

;

Similarly w = v
. , — v = 3A (2n + I) + 3A + 211

and z =w .— iv =6-4.
H »ti ii

Thus the terms in the third order of differences are equal;
and generally, if the nih term of the given series is of p dimensions,
the terms in the p

th order of differences will be equal.

Conversely, if the terms in the ]j
th order of differences are

equal, the utu term of the series is a rational integral function of

ii of p dimensions.

Example. Find the «th term of the series -1, - 3, 3, 23, G3, 129,

The successive orders of differences are

-2, 6, 20, 40, GO,

8, 14, 20,20,

6, 6, 0,

Thus the terms in the third order of differeLces are equal ; hence we may
assume it H=A+Bn+Cn2 + Dn 3

,

where A, B, G, D have to be determined.

Putting 1, 2, 3, 4 for 7i in succession, we have four simultaneous
equations, from which we obtain A =3, B = -3, C= - 2, D — \

;

hence the general term of the series is 3 - 3n - 2n2 + n9.

398. If a
ri

is a rational integral function of p dimensions

in n, the series

a, + ax + ajx
2 + ... + a xn12 »i

is a recurring series, ivhose scale of relation is (I — x)p+1 .

Let S denote the sum of the series ; then

S (1 - x) -- a
o
+ (a

x

- a )x + {a, - ajx* + . .. + (a, - a ,_>" - ax" + l

= a + b
t

x + bjc
2 + ... + bx" - ax" +

\ say;

here b =a —a
,

, so that 6n is of p - 1 dimensions in n.
n h it — 1

' "• x

Multiplying this last series by 1 - x, we have

S(i-xy

=s+(^-a„)*+(^-^K+..-+(6n-6„-iK-(«J
,+6>" +l+«X

+a

= c^+{b-a )x+c^2 + c
i
x^...+cX-{a

i

+b
iy, ^ + a

i

:c
,+
% say;

here cn -bn -b u u so that cn is of p - 2 dimensions in n.
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Hence it follows that after the successive multiplications by
1 — x, the coefficients of xn

in the first, second, third, . . . products

are general terms in the first, second, third, . . . orders of differences

of the coefficients.

By hypothesis an is a rational integral function of n of p
dimensions ; therefore after p multiplications by 1 - x we shall

arrive at a series the terms of which, with the exception of p
terms at the beginning, and p terms at the end of the series, form

a geometrical progression, each of whose coefficients is the same.

[Art. 397.]

Thus S (1 - xf = k(xp + x>'
+1 + ...+ x") +/(a?),

where k is a constant, and f (x) stands for the p terms at

the beginning and p terms at the end of the product.

r.Sil-xyJ^l^K/ix);

kx»(l-x"-^) + (l-x)f(x)
^

that is, a = (1 -x)p+l '

thus the series is a recurring series whose scale of relation is

(l-x)p+1
. [Art. 325.]

If the general term is not given, the dimensions of a
n
are

readily found by the method explained in Art. 397.

Example. Find the generating function of the series

3 + 5a; + 9a;2 +15a;3 + 23a;4 + 33a;5 +

Forming the successive orders of differences of the coefficients, we have
the series

2, 4, G, 8, 10,

2, 2, 2, 2, ;

thus the terms in the second order of differences are equal ; hence an is a
rational integral function of n of two dimensions ; and therefore the scale

of relation is (1 - a;)
3

. We have

S = 3 + 5x + 9a;
2 + 15.r3 + 23a;4 + 33a;5 +

- SxS = - 9.r - 15a;2 - 27.x-3 - 45a;4 - 69^ -

Sx2S = 9a;2 + 15a;3 + 27.r4 + 45a;5 +

-xsS= - 3^- 5a;4 - 9a;
5 -

By addition, ( 1 - a;)
3 S= 3 - 4a; + 3a;

2
;

3-4.r + 3a;2

•*• b ~ (1-a;) 3
*
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399. We have seen in Chap, xxiv. that the generating

function of a recurring series is a rational fraction whose denomi-

nator is the scale of relation. Suppose that this denominator can

be resolved into the factors (1 — ax) (1 — bx) (1 — ex) ; then the

generating function can be separated into partial fractions of the

- ABC
torm , 1-

1 - ax 1 — bx 1 - ex

Each of these fractions can be expanded by the Binomial Theorem
in the form of a geometrical series; hence in this case the re-

curring series can be expressed as the sum of a number of

geometrical series.

If however the scale of relation contains any factor 1 - ax
more than once, corresponding to this repeated factor there will be

A A
partial fractions of the form -^ —-7, ... —r=, : which

(1 -axy (1 - ax)

when expanded by the Binomial Theorem do not form geometrical

series; hence in this case the recurring series cannot be expressed

as the sum of a number of geometrical series.

400. The successive orders of differences of the geometrical

progression

a, ar, ar2
, ar3

, ar\ ar
n

,

are «(r-l), a(r—l)r, a(r-l)r2
, a(r—\)r?'

a(r-l)2
, a(r-l) 2

r, a(r-\fr2

,

which are themselves geometrical progressions having the same
common ratio r as the original series.

401. Let us consider the series in which

where </>(rc) is a rational integral function of n of p dimensions,

and from this series let us form the successive orders of differences.

Each term in any of these orders is the sum of two parts, one
arising from terms of the form arn~\ and the other from terms of

the form <£(?i) in the original series. Now since <f>(n) is of ;;

dimensions, the part arising from <f>(n) will be zero in the (p + l)th

and succeeding orders of differences, and therefore these series

will be geometrical progressions whose common ratio is r.

[Art. 400.]
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Hence if the first few terms of a series are given, and if the

p
th order of differences of these terms form a geometrical pro-

gression whose common ratio is r, then we may assume that the

general term of the given series is ar""
1

+f(n), where f(n) is a

rational integral function of n of p - 1 dimensions.

Example. Find the nth term of the series

10, 23, 60, 169, 494,

The successive orders of differences are

13, 37, 109, 335,

24, 72, 216,

Thus the second order of differences is a geometrical progression in which

the common ratio is 3 ; hence we may assume for the general term

un—a . Sn-^ + bn + c.

To determine the constants a, b, c, make n equal to 1, 2, 3 successively;

then a+ b + c=10, 3a + 2b+c = 23, 9a + 3b + c = 60;

whence a= 6, 6=1, c = S.

Thus un = 6 .
3'1

"
1 + n + 3 = 2 . 3» + n + 3.

402. In each of the examples on recurring series that we
have just given, on forming the successive orders of differences

we have obtained a series the law of which is obvious on inspec-

tion, and we have thus been enabled to find a general expression

for the ?4
th term of the original series.

If, however, the recurring series is equal to the sum of a

number of geometrical progressions whose common ratios are

«, b, c, ..., its general term is of the form Aa"' 1 + Bbn~ l + Cc
n~\

and therefore the general term in the successive orders of

differences is of the same form ; that is, all the orders of differ-

ences follow the same law as the original series. In this case to

find the general term of the series we must have recourse to the

more general method explained in Chap. xxiv. But when the

coefficients are large the scale of relation is not found without

considerable arithmetical labour ; hence it is generally worth

while to write down a few of the orders of differences to see

whether we shall arrive at a series the law of whose terms is

evident.

403. We add some examples in further illustration of the

preceding principles.
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Example 1. Find the sum of n terras of the series

1.2'3 + 2.3'33+ 3.4'35 + 4.5 *3^ +

„ 2« + 3 1

" 1l(ll + l) 3"

2n + 3 .4 7?
Assuming —

= . = - + = ,n(u+l) n n + 1

we find A =3, B= -1.

tt /3 1 \ 1 1 1 11
Hence t/,. =

(
) — = - .

-—,
. — .

" \n n + 1) 3" n 3"- 1 n + 1 3"'

and therefore #,, = 1 . - .n n + 1 3'1

Example 2. Find the sum of n terms of the series

1 _3_ _5 7

3
+

3. 7
+
3. 7. 11

+
3. 7. 11. 15

+

The rih term is .,„,., r, kt: •, •

3.7 . 11 (An- 5) (4/i-l)

. 2n-l A (n + 1) + B An + B
ssume

3 7 (4n _ 5) (4n _i)
~

3 . 7 ......4»-l
"
3.7 (4„ - 5)

'

.-. 2rc-l= ,4n + (J+I>>

)-(.-t» + .B)(4?i-l).

On equating coefficients we have three equations involving the two
unknowns A and B, and our assumption will be correct if values of A and B
can be found to satisfy all three.

Equating coefficients of n 2
, we obtain ^1=0.

Equating the absolute terms, -1 = 2B; that is B = -%; and it will be
found that these values of A and B satisfy the third equation.

1 1 1 1
""' V,l~2 *3.7 (4»-5) 2'3.7 (4»-5)(4»-l) ;

hence S„ = . —
" 2 2 3.7.11 (4»-l)

Example 3. Sum to n terms the series

G. 9 + 12. 21 + 20. 37 + 30. 57 + 42. 81 +

By the method of Art. 396, or that of Art. 397, we find that the ;t
th terra

of the series 6, 12, 20, 30, 42, is ?r + 3» + 2,

and the ;«
th term of the series

9, 21, 37, 57, 81, is2n*+6n+l.
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Hence »„=(« + 1) (a + 2) {2m (m+3) + 1}

= 2m [n + 1) (?i + 2) (»+ 3) + (n + 1) (m + 2)

;

•'• S«=ln(»+l)(»+2)(n+3)(n+4)+|(n+i)(n+2)(n+8)-2.

Example 4. Find the sum of ??. terms of the series

2.2 + 6.4 + 12.8 + 20.16 + 30.32+

In the series 2, 6, 12, 20, 30, the ?i
th term is n2 + n

;

hence un= {n2 + n) 2n .

Assume (rc
2 + m) 2'1= (An2 + Bn+ C)2n - {A (n-l) 2 +B (n - 1) + C\ 2"- 1

;

dividing out by 2'1_1 and equating coefficients of like powers of n, we have

2 = A
t
2=2A+B, 0=C-A + B;

whence A=2, B= -2, 0=4.

.-. wn= (2?i2 - 2n + 4) 2n - { 2 (n - l)2 - 2 (n - 1) + 4 }
2"- 1

j

and Sn= (2m2 - 2m + 4) 2 n - 4 = (na - n + 2) 2*« - 4.

EXAMPLES. XXIX. b.

Find the nth term and the sum of n terms of the series

1. 4, 14, 30, 52, 80, 114,

2. 8, 26, 54, 92, 140, 198,

3. 2, 12, 36, 80, 150, 252,

4. 8, 16, 0, -64, -200, -432,

5. 30, 144, 420, 960, 1890, 3360,

Find the generating functions of the series :

6. 1 + 3x+ 7x2 +13.^ + 21a4 + 31a6+

7. 1 + 2a+ 9a2+ 20a3 + 35a4+ 54a3+

8. 2 + 5a + 10a2 + 1 7a-3 + 26a4+ 37a-5 +

9. 1 - 3a+ 5a2 - 7Xs+ 9a4 - 11a6 +

10. I 4+ 2% + 34a2 + 44^ + 5 4a4 +

Find the sum of the infinite series :

11.
3
+

32
+ 33 +

g4
+

12 i 2 _?-
2

+ ??_iV 2

_ 62
+1Z>

* 5
+

52 53
+

5« 5*
+ "
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Find the general term and the sum of n terms of the series :

13. 9, 16, 29, 54, 103,

14. -3, -1, 11, 39, 89, 167,

15. 2, 5, 12, 31, 8(i,

16. 1, 0, 1, 8, 29, 80, 193,

17. 4, 13, 35, 94, 262, Tr»5

Find the sum of n terms of the series :

18. 1 + 8*+ 3.>/- + 4./,-'; + 5.t-
1 +

19. 1+ 3.i-+ 6x2 + lO.f'5 + 1 5.r* +

onJLi 4 1 5 1 6 1

1.2*2 + 2.3 "2 :2

'f 3.4'2 !
+ 4.5'2 4

+

21 '

2T3-
4+ i£i-

4S+
4^5- 4' +0- 44+

22. 3.4 + 8. 11 + 15.20 + 24.31+35.44+

23. 1.3 + 4.7 + 9.13 + 16.21+25.31 +

24. 1.5 + 2.15 + 3.31+4.53 + 5.81 +

oC 1 2 3 4
25 1 A k — 4-

' 1.3^1.3.5 1.3.5.7 1.3.5.7.9

nn 1.2 2.2-' 3.23 4.2 4

26 ' ^- + 14- +
-T5-

+
-T6-

+

27. 2.2 + 4.4 + 7.8 + 11.16+16.32 +

28. 1 . 3 + 3 . 32 + 5 . 33+ 7 . 34+9. 3>+ ...

rtr. 1 1.3 1.3.5 1.3.5.7
'

2. 42. 4. 62.4. 6. 82. 4. 6. 8. 10

30 -± +— 2+i5L 92, ll 23+^
1.2

+ 2.3' 2+ 3.4' 2 + 4.5" 2 +

_4_ 1 _5_ 1 (J 1

1.2.3*3 2.3.4' 32
+
3.4. 5" 33

+

32 ±+A + H + ^ +
(3^ |4 |5 |6

33
19

I
28 1 _39_ J_ 52 1

'

1 . 2 . 3 ' 4
+

2 . 3 . 4 " 8
+

3 . 4 . 5 * 16
+

4 . 5 . 6 ' 32
+
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404. There are many series the summation of which can be

brought under no general rule. In some cases a skilful modifi-

cation of the foregoing methods may be necessary ; in others it

Avill be found that the summation depends on the properties of

certain known expansions, such as those obtained by the Binomial,

Logarithmic, and Exponential Theorems.

Example 1. Find the sum of the infinite series

2 12 28 50 78

[I
+

|2
+

|3_

+
|I
+

|5

+

term of the series 2, 12, 28, 50, 78. .. v . is 3n- + n -2; hence

3h2 +j«-2 3h(h-1)+4»-2
a»"

]n |n

+
2

;i-2 n-1 In"

Put n equal to 1, 2, 3, 4,... in succession ; then we have

2 4 2 3 4 2
", = 4--; „ 2

= 3 +
ri

-
r2

; «3=ji + ^ - -gj
i

and so on.

Whence ,Sf„ = Se + 4e - 2 {e - 1) = 5e + 2.

Example 2. If (1 + a;)
n= c + crr + c

2
.r
2 + . . . + cnx

n
, find the value of

l-c
1 + 22c2 + 32c3 +... + n\v

As in Art. 398 we may easily shew that

l2 + 22
.r + 32

.r
2 + &x3 +...+ n-xn

~ l + . . . =

Also cn + cn_x
x + . . .c.2£

n-2 + c^11'1 + c xn= (1 + .r)
n

.

Multiply together these two results; then the given series is equal to

(l + .r)
n+1

. . (2 - 1 - x)n+1
the coefficient of x 11 x in ,., .„ , that is, in -

—

7
- J=— .

(1 - x) A
(1 - x)3

The only terms containing jc
n-1 in this expansion arise from

2"+! (1 - .r)- 3 - (n + 1) 2>l (1 - .t)" 2 + \!l±Jll
%*-i (i _ ^-l.

.-. the given series=
fL^+3 2»+i _ „ („ + 1)

gn + ?ii"±:
l
) 2h-i

-n(w+l)2«-!
.
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Example 3. If b = a + l, and )i is a positive integer, find the value of

IP _ (n _ 1) „,,. - +
»-»>(»-«>

rfj. . _ C-3)(»-4)(»-5)^ +
|2 \6

By the Binomial Theorem, we see that

(n-8) (n-2) (n-5)(n-4)(»-3)

are the coefficients of xn , .r'
1-2

, .r
n_4

, .r'
1 -*5

,
in the expansions of (1 x) ',

(1-.t)- 2
, (1-x)-*, (l-.r) -4 , respectively. Hence the sum required is

e<pial to the coefficient of x* in the expansion of the scries

1 ax* a-x4 a*x6

+1-bx {1-bx)3 ' (1-fcc)8 (1 - bx)*
'

and although the given expression consists only of a finite number of terms,

this series may be considered to extend to infinity.

But the sum of the series = ,

—

;
—•- ( 1 + , ) = z

—

z

1-bx \ 1-bxJ 1-bx + ax"

i

, since b — a+1.
1 - (a + l)x + ax-

Hence the given series = coefficient of xn in
(l-x)(l-ax)

= coefficient of xn in = (
- - ~ -

}

a - 1 \1 -ax 1—x)

a H+l _ 1

a-1

Example 4. If the series

, x3 xe X* X7 x'
2 X5 X8

1 +
J3

+
JG
+

'

•r +
]5
+

|7

+
'

|2_

+
|5

+
|8_

+

are denoted by a, b, c respectively, shew that a8+ 63+ c8 -3o6c=l.

If w is an imaginary cube root of unity,

a3 + b3 + c3 - Sabc = {a + b + c) (a + wb + w'-c )
(a + w-b + ojc) .

.t
2 xz

.t
4 Xs

Now ' lA~ h + c = 1+x + ~\9 +
\3
+

Tl
+

~\5
+

and
w-.r- ur\r- w4

.c
4 w'.r'

>/ + lob + OJ-C-1+ C0X+ — + -r^- + —T- + -r=~

\ \ \ \

I= e

similarly a + io'-b + wc = c

bc =

1, since l + w + ur = 0.

0)=X

•.
, , .,

, , o , X uX co
2X (l+u> + w!)x
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405. To find the sum of the rth powers of the first n natural
numbers.

Let the sum be denoted by S
n ; then

S
H
=V+2 r + 3

r + ... + nr

.

Assume that

S =A
n
nr+i +Anr + A nr- 1 +Anr~ 2 + ... +An + A + 1 (1),n 1 2 3 r r + 1 \ /

'

where A , A^ A
2 , A 3 , ... are quantities whose values have to be

determined.

Write n + 1 in the place of n and subtract; thus

(n + l)
r = A {(n + l)

r+1 - nr+1
] + A

x
{{n + 1)' - nr

]

+ A 2
{(n+ l)- 1 -n'- 1

} + A 3
{(n + iy~2 -nr- 2

} + ... +A
r...(2).

Expand (?i+l)
r+
\ (n + l)

r

,
(n+l)r_1

,
... and equate the co-

efficients of like powers of n. By equating the coefficients of n r

,

we have
1

l=A. (r + 1), so that A a
= T .

By equating the coefficients of nr !

, we have

A (r+ l)r 1
r = ° —— + A

x
r ; whence A

x
= ^

.

Equate the coefficients of nr p
, substitute for A and A

Jf
and

multiply both sides of the equation by

\P

r(r-l)(r-2) ... {r- 2)+ 1)
;

we thus obtain

i ~p + l
+

2
+ A

'r
+ A

'r(r-l)
+ ^ r(r - 1) (r-2)

+ "^
In (1) write w — 1 in the place of n and subtract; thus

nr=A {n
r+l -(n-iy +i}+A

l

{?i
r-(n-l) r

} +A 2
{nr ' 1 -(n-iy- 1

} + ...

Equate the coefficients of nr~p
, and substitute for A , A 1 ; thus

o '4 +^-^gzi) +i/^;);^) -....w
p + 1 2 2

r
3 r (?• - 1

)

4 v (?• - 1) (r - 2)
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From (3) and (4), by .addition .and subtraction,

2 p + 1 "r * r(r-l)(r-2)

o^/_^)^/ 0'-i)(p-g(^-3)
+ (6).3 r (r - 1) r (?• - 1) (r - 2) (r - 3)

w
By ascribing to }> in succession the values 2, 4, 6, . .

.
, we see

from (G) that each of the coefficients A.^ A 5>
A.,... is equal

to zero; and from (5) we obtain

1 r ___1_ r (r-l)(r-2)
,

6 "

1^
J

30
'

li

. _J_ r(r-l)(r-2)(r-3)(r-4)
8 ~42"

|6
;

By equating the absolute terms in (2), we obtain

\=A^A
X
+ A

%
+ A

Z
+ +A

r

-

and by putting n= 1 in equation (1), we have

1 = A +A
l
+ A

a
+A9 + +A

r +Ar+l ;

thus A r+1
= 0.

406. The result of the preceding article is most conveniently

expressed by the formula,

„ nr+x
1 , „ r

r_ x
_ r(r-l)(r-2)

r_ 3

" r+1 2
l 2 3 4

r(r-l)(r-2)(r-3)(r-4)^ +
'6

w }lprp 7? - i 7?- 1 7? i 7? i 7? — 5

The quantities B
x

, B3 , 2?
5 ,

... are known as Bernoulli's Numbers;
for examples of their application to the summation of other series

the advanced student may consult Boole's Finite Differences.

Example. Find the value of l5 + 25 + 35
-f + n 5

.

ttt , r. n6 n5 ^,5 . _5 . 4 . 3 „ _We have S„= ^- + ^+^ -^ n* - Ba—j— n* + C,

_?t6 n5 5?i4 n2

~6 + "2 + l2~r2'
the constant being zero.

II. ii. A. 22
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EXAMPLES. XXIX. c.

Find the sum of the following series:
^ ^ ^JL +A

5. l +^+-\T'T |1 2 ii 3

-3 r/3

6. *rz
p
r p

r-i q £± £ + f^l.2- + to r + 1 terms.

(1 + .r) _ »^"2) _

X + 2
^

7- TX^" "'
12 "•(1+^)"

1+tm;

?i(?i-l)(™- 2)
1+3a? - to n terms.

2n+ l
, K /2/i + xY + ... to n terms.

o,2 W2
( 7l

2 _ 12) 7i
2 (ft

2 -

1

2)^
2^2

) + to w + 1 terms.

9. i-j[i+-ii7? 12 .2*.3
2

1 + 23

1L r2T3
+ 3^T5 + 5T677

+

2 3^6 11 18

12.
ji
+

]|
+

[3

+
|4

+
|5

+

2a8 ^ W 23s5 121s6
_

is. 1

+-J2-|3
+ "[7-'|r 16

14 Without fuming the formula, find the sum of the series:

W !«+*+*+ +»«• « 17 + 2;+ 3? + + "-
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33 43 53
15. Find the sum of l 3+ 23 + - + — + _+

B I* I*

16. Shew that the coefficient of xn in the expansion of ., is
(l-X)2 -r.r

fl 1

"'- 1
/-

1
("

2 -l)(«2 -4)
,

1

(n*-lKn*-4)(n*-9)
)

Y
+
if" n

c+
[7

* + }'

17. If n is a positive integer, find the value of

8.- (
»-i)^ + e»- g)('t

- 8)
2^- (»- 8)(»- 4)»- 6 )

g^+
\ 2 \o

and if 11 is a multiple of 3, shew that

1 - (
»- 1)+

(»-»H»-3) _(»-8)(»-4)(»-6)
+ =(_ 1)n

18. If ?i is a positive integer greater than 3, shew that

rf+«flga (
.-y+ "(»-i)<«-«)(— *)

(
,l 4y+ ...

=»»*(»+ 3) SP*"4.

19. Find the sum of ??. terms of the series :

1 2 3W
i + i2+ i"4

+
l + 2 2+ 2

4+ l+32 + 34
+

(2) _5__J_+JL__L+i3 _JLL+ 17

2.3 3.4 4.5 5.6 6.7 7.8

(-l)n + 1xn
20. Sum to infinity the series whose nth term is

?i(n+l)(n+ 2)

21. If (1 + x)n— Cq+ cvv+ c^v2+ CyV3+ + cn#n, n being a positive

integer, find the value of

(n - \)\+ (n - 3)
2c3+ (?i - 5)

2c5 +

22. Find the sum of n terms of the series :

„ N 2 4 8 16 32

1.5 5.7 7.17 17.31 31.65

7 17 31 49 _71_^ 1.2.3 2.3.4
+
3.4.5 4.5.6 5.6.7

23. Prove that, if a< 1, ( 1 + or) ( 1 +A) ( 1 + a?x) ....

ax a*x2 aPx3
= 1 + 5- -,+T: =5wi—=K +1-a2

' (l-«2)(l-a4
)

' (l-« 2)(l-a4)(l-a' !

)
"

22—2
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24. If A r is the coefficient of xr in the expansion of

2/ *A2 / ^.\2

2~3 J
'(i +,f(i +

|)

2

(i +
|)

2

(i + ;

2s ,, , v j , 1072
prove that ^l r=2^ (^4 r-i+ ^r-2) >

and ^4= "3^5

25. If n is a multiple of 6, shew that each of the series

n-^~\i— - 3+
[5

- 3 "

w(w-l)(w-2) 1 ,
n(n-l)(n-2)(n-S)(n-4) 1

11

[3
*3 +

|5
""'32 •-

is equal to zero.

26. If n is a positive integer, shew that

pti + 1 _ qn + 1

is equal to .

27. If Pr
=(w-r)(»-r+l)(n-r+2) (n-r+^-1),

&=r(r+l)(r+2) (r+^-1),

shew that
ho k \n-l+p+ qP&+ P2Q2+ P3Q3+ +P»-i^-i=
|> + g+l|n-2

28. If ?i is a multiple of 3, shew that

, »-3 (m-4)(w-5) (w-5)(w-6)(w-7)
1 "^" + "~

|3 H^ (n-r-l)(w-r-2)...(tt-2r+ l)
,

+ (-!) u.
"'"•••'

3 1
is equal to - or— , according as n is odd or even.u n n

29. If x is a proper fraction, shew that

x xz x5 x x3 Xs

1_^2 l_#6
T l_a?io 1 +.v2^1+^ ' l+.r10



CHAPTER XXX.

Theory of Numbers.

407. In this chapter we shall use the word number as equi-

valent in meaning to positive integer.

A number which is not exactly divisible by any number
except itself and unity is called a prime number, or a prime; a

number which is divisible by other numbers besides itself and
unity is called a composite number \ thus 53 is a prime number,
and 35 is a composite number. Two numbers which have no
common factor except unity are said to be prime to each other

;

thus 24 is prime to 77.

408. We shall make frequent use of the following elementary
propositions, some of which arise so naturally out of the definition

of a prime that they may be regarded as axioms.

(i) If a number a divides a product be and is prime to one
factor b, it must divide the other factor c.

For since a divides be, every factor of a is found in be; but
since a is prime to b, no factor of a is found in b; therefore all

the factors of a are found in c ; that is, a divides c.

(ii) If a prime number a divides a product bed..., it must
divide one of the factors of that product ; and therefore if a

prime number a divides b", where n is any positive integer, it

must divide b.

(iii) If a is prime to each of the numbers b and c, it is prime

to the product be. For no factor of a can divide b or c ; there-

fore the product be is not divisible by any factor of a, that is, a

is prime to be. Conversely if a is prime to be, it is prime to eacli

of the numbers b and c.

Also if a is prime to each of the numbers b, c, d, ..., it is

prime to the product bed... ; and conversely if a is prime to any
number, it is prime to every factor of that number.
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(iv) If a and b are prime to each other, every positive

integral power of a is prime to every positive integral power of b.

This follows at once from (iii).

(v) If a is prime to b, the fractions =- and j- are in theirbo
ft

lowest terms, n and m being any positive integers. Also if j and

- are any two equal fractions, and j is in its lowest terms, then

c and d must be equimultiples of a and b respectively.

409. The number ofprimes is infinite.

For if not, let p be the greatest prime number; then the

product 2 . 3 . 5 . 7 . 11 . . .p, in which each factor is a prime num-
ber, is divisible by each of the factors 2, 3, 5, . . .p ; and therefore

the number formed by adding unity to their product is not

divisible by any of these factors ; hence it is either a prime

number itself or is divisible by some prime number greater than

p : in either case p is not the greatest prime number, and there-

fore the number of primes is not limited.

410. No rational algebraical formula can represent prime

numbers only.

If possible, let the formula a + bx + ex
2 + dx3 + ... represent

prime numbers only, and suppose that when x = m the value of

the expression is ]), so that

p — a + bm + cm2 + dm3 + ;

when x = m + np the expression becomes

a + b (m + np) + c {m + np) 2 + d (m + np)
3 + ...,

that is, a + bm + cm2 + dm3 + . . . + a multiple of p,

or p + a multiple of p,

thus the expression is divisible by £>, and is therefore not a prime

number.

411. A number can be resolved into prime factors ,in only one

way.

Let N denote the number; suppose N = abed..., where

a, b, c, d, ... are prime numbers. Suppose also that JV = a/3yS...,

where a, /3, y, 8, ... are other prime numbers. Then

abed... = a/3yS...
;
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hence a must divide; abed... ; but eacli of the factors of this pro-

duct is a prime, therefore a must divide one of them, a suppose.

But a and a are both prime ; therefore a must be equal to a.

Hence bed. . . =/3yS. .
.

; and as before, /? must be equal to one of the

factors of bed...
J
and so on. Hence the factors in a/3y<$... are

equal to those in abed..., and therefore iV can only be resolved

into prime factors in one way.

412. To find the number of divisors of a composite number.

Let N denote the number, and suppose N"=apbg<f..., where
a, b, c, ... are different prime numbers and p, q, r, ... are positive

integers. Then it is clear that each term of the product

(l+a + a' + ...+a'')(l+b + b
2 + ... + V) (I + c + c

2 + ...+c
r

)...

is a divisor of the given number, and that no other number is a
divisor ; hence the number of divisors is the number of terms in

the product, that is,

(f>+l)fe+l)(r + l)

This includes as divisors, both unity and the number itself.

413. To find the number of ways in which a composite number
can be resolved into two factors.

Let N" denote the number, and suppose N = a'tyc' . .
.
, where

a, b, c... are different prime numbers and ]), q, r... are positive

integers. Then each term of the product

(I + a + a2 + ... + of) (1 + b + b
2 + . . . + b'

1

) (1 + c + c
2 + . . . + c

r

) . .

.

is a divisor of iV; but there are two divisors corresponding to

each way in which iV can be resolved into two factors ; hence the

required number is

}(!>+l)& + l)(r + l)

This supposes N not a perfect square, so that one at least of the

quantities^, q, r, ... is an odd number.

If N is a perfect square, one way of resolution into factors

is x/iVx JNj and to this way there corresponds only one divisor

JX. If we exclude this, the number of ways of resolution is

!{(p+l)(? + l)(r + l)...-l},

and to this we must add the one way JN x N/iV; thus we obtain

for the required number

\{(P + !)(</+ !)(<•+ l)- + lj
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414. To find the number of ways in which a composite

number can be resolved into two factors which are prime to each

other.

As before, let the number N = avbqc
r
.... Of the two factors

one must contain ap, for otherwise there would be some power of

a in one factor and some power of a in the other factor, and thus

the two factors would not be prime to each other. Similarly bq

must occur in one of the factors only ; and so on. Hence the

required number is equal to the number of ways in which the

product abc... can be resolved into two factors; that is, the

number of ways is -(1 + 1)(1 + 1)(1 + 1)... or 2"" 1

, where n is

the number of different prime factors in N.

415. To find the sum of the divisors of a number.

Let the number be denoted by apb qc
r
..., as before. Then each

term of the product

(1 +a + a2 + ...+ar)(l+b + b
2 + ... + b'

1

) (1 + c + c
2 + ...+c

r

)...

is a divisor, and therefore the sum of the divisors is equal to this

product ) that is,

the sum required =
a. _ i &»+'_! c

r+1 -l
a -1 * b-l " c-1

Example 1. Consider the number 21600.

Since 21600 = 63
. 102= 23

. 33
. 22

. 52 = 23
. 33

. 52,

the number of divisors = (5 + 1) (3 + 1) (2 + 1) = 72

;

.. ... ,. .
26-1 3*-l 53 -l

the sum of the divisors = —

—

? . 5—— .
-—

-

2 — 1 o — 1 5 — 1

= 63x40x31
= 78120.

Also 21600 can be resolved into two factors prime to each other in 23_1
,

or 4 ways.

Example 2. If n is odd shew that n (n2 - 1) is divisible by 24.

We have n(n2 - l) = 7i {n- 1) (n+1).

Since n is odd, n - 1 and n+1 are two consecutive even numbers ; hence
one of them is divisible by 2 and the other by 4.

Again n - 1, n, n + 1 are three consecutive numbers ; hence one of them
is divisible by 3. Thus the given expression is divisible by the product of 2,

3, and 4, that is, by 24.
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Example 3. Find the highest power of 3 which is contained in
J

100.

Of the first 100 integers, as many are divisible by 3 as the number of
times that 3 is contained in 100, that is, 33 ; and the integers are 3, G, 9,... 99.

Of these, some contain the factor 3 again, namely 9, 18, 27,... 99, and their

number is the quotient of 100 divided by 9. Some again of these last

integers contain the factor 3 a third time, namely 27, 54, 81, the number of

them being the quotient of 100 by 27. One number only, 81, contains the
factor 3 four times.

Hence the highest power required = 33 + 11 + 3 + 1 = 48.

This example is a particular case of the theorem investigated in the next
article.

416. To find the highest 'power of a prime number a which is

contained in In.

n iii n
Let the greatest integer contained in -, —

2 ,
—

tJ
... respectively

Cv Ct CL

be denoted by / ( --
] , /(-,], /(-§),... Thenamong thenumbers

1,2, 3, ... n. there are / (
-

j
which contain a at least once, namely

the numbers a, 2a, 3a, 4a, ... Similarly there are I[-A which

contain a2 at least once, and I ( —
g

) which contain «3
at least once;

and so on. Hence the highest power of a contained in \n is

'©'©)*'6) + ~

417. In the remainder of this chapter we shall find it con-

venient to express a multiple of n by the symbol Jl(n).

418. To prove that the prodicct of r consecutive integers is

divisible by |r.

Let P
n
stand for the product of r consecutive integers, the

least of which is n ; then

Pn
= n(n+l)(n + 2) ... (u + r-l),

and Pn+l
= (n+l)(n + 2)(n+3) ...(n+r);

• \ nPm+i = (n + r) P = nP
n
+ rP

H ;

p
.-. 1> -P =lsxr

= r times the product of r — 1 consecul ive integer-.
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Hence if the product of r — 1 consecutive integers is divisible by
\r — 1, we have

Pm+1 -Pm
= rM(\r-l)

= M(\r).

Now P, = |?', and therefore P
2

is a multiple of \r \ therefore

also P. , P , . . . are multiples of (r. We have thus proved that if

the product of r— 1 consecutive integers is divisible by \r — 1, the

product of r consecutive integers is divisible by \r ; but the

product of every two consecutive integers is divisible by
1 2

;

therefore the product of every three consecutive integers is divisible

by
1

3 ; and so on generally.

This proposition may also be proved thus

:

By means of Art. 416, we can shew that every prime factor

is contained in \n + r as often at least as it is contained in \n \r.

This we leave as an exercise to the student.

419. If p is a prime number, the coefficient of every term in

the expansion q/*(a + b)p , except the first and last, is divisible by p.

"With the exception of the first and last, every term has a co-

efficient of the form

p(p-l)(p-2)...(p-r + l)

'-

where r may have any integral value not exceeding p— 1. Now
this expression is an integer; also since p is prime no factor of

\
r

is a divisor of it, and since p is greater than r it cannot divide

any factor of \r ; that -is, (p — 1) (p — 2)... (p - r + 1) must be

divisible by |r. Hence every coefficient except the first and

the last is divisible by p.

420. If p is a prime number, to prove that

(a + b + c + d + ...)p= a5 + b 1 ' + cp + dp + . . . + M(p).

Write ft for b + c + . .

.

; then by the preceding article

(a +py = a* + p' + M(p).

Again J3
p = (b + c + d+ . .

.

)

p = (b + y)
p suppose

;

= bp+y + M{p).

By proceeding in this way we may establish the required result.
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421 [Fermat'a Theorem.] If p is a prime number and N isprime to p, then N"" 1 -lis a multiple of p.

We have proved that

(a + b + c + d+ ...y^a' + V+c* + d"+ ... + M (p);
let each of the quantities «, 6, Cj 4 ... be equal to unity, and sunpose they are N in number ; then

J ' P

But ,V is prime top, and therefore iV'- - 1 is a multiple of p.

' °°\
}

SiT ^ is P l™°> P-li* an even number except when/>=J. lherefore r

Hence either 2^ + 1 or S^ - 1 « a multiple of ft

that is .V -• = 7^ ± 1, where K is some positive integer.

422. It should be noticed that in the course of Art. 421 it

tins result is sometimes more useful than Fermat's theorem.

Example 1. Shew that n7 - n is divisible by 42.

Since 7 is a prime, n7 - n

=

M (7)

;

a

T

1S° n? - n:=n (»
G -l) = >i(n + l)(n-l)(n* + nS + l).

Now (n - 1) n (n + 1) is divisible by |3 ; hence n? - n is divisible by 6 x 7, or 42.

Dowfra of^J; tSL*
iS \pHme DU^ber

'
shew that the difference of the p"

mXpleof^7
mimbeiS GXCeedS thG dlfference of the numbers b/a

Let .r, y be the numbers ; then

*p-x=M(p) and y»-y=M (p),thatls
> *p-yp-(*-y)=^(p);

whence we obtain the required result.

Example 3. Prove that every square number is of the form Sn or on ± 1.

Tf v -

V iS
-

UOt
?
r
L
ml t0 5

x'J
e have AT2= 5;i where » w some positive integer

S£r^PTi?5n 1 l

G
• ~ l

iS
i*

n
i
ultipIe 0f 5 ^ Fermat'« theorem

;
thuseitner n»- 1 or N*+l is a multiple of 5 ; that is, tf»=5w ± 1.



348 HIGHER ALGEBRA.

EXAMPLES. XXX. a. i

1. Find the least multipliers of the numbers

3675, 4374, 18375, 74088

respectively, which will make the products perfect squares.

2. Find the least multipliers of the numbers

7623, 109350, 539539

respectively, which will make the products perfect cubes.

3. If x and y are positive integers, aud if x—y is even, shew that

a?—y2 is divisible by 4.

4. Shew that the difference between any number and its square

is even.

5. If -ix-y is a multiple of 3, shew that 4x2+ 7xy - 2y2 is divisible

by 9.

6. Find the number of divisors of 8064.

7. In how many ways can the number 7056 be resolved into

two factors ?

8. Prove that 2 4 '1 - 1 is divisible by 15.

9. Prove that n (?i+ 1) (n+ 5) is a multiple of 6.

10. Shew that every number and its cube when divided by 6 leave

the same remainder.

11. If n is even, shew that n (;i
2+ 20) is divisible by 48.

12. Shew that n (?i
2 - 1) (Sn+ 2) is divisible by 24.

13. If n is greater than 2, shew that n5 — 5n3
-f 4?i is divisible by

120.

14. Prove that 32n+ 7 is a multiple of 8.

15. If n is a prime number greater than 3, shew that ?i
2 - 1 is

a multiple of 24.

16. Shew that n5 — n is divisible by 30 for all values of n, and by
240 if n is odd.

17. Shew that the difference of the squares of any two prime
numbers greater than 6 is divisible by 24.

18. Shew that no square number is of the form 3?i — 1.

19. Shew that every cube number is of the form 9?i or 9n±L
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20. Shew that if a cube number is divided by 7, the remainder
is 0, 1 or 6.

21. If a number is both square and cube, shew that it is of the
form 7n or 7?t+l.

22. Shew that no triangular number can be of the form 3u - 1.

23. If 2» 4- 1 is a prime number, shew that l 2
, 22

, 32,...n2 when
divided by 2>i+l leave different remainders.

24. Shew that ax + a and a* - a are always even, whatever a and x
may be.

25. Prove that every even power of every odd number is of the
form 8r+ l.

26. Prove that the 12th power of any number is of the form I3)i

or 13ft+l.

27. Prove that the 8th power of any number is of the form I7n
or I7n±l.

28. If n is a prime number greater than 5, shew that n 4 — 1 is

divisible by 240

29. If n is any prime number greater than 3, except 7, shew that

nG — 1 is divisible by 168.

30. Show that ?i
36 - 1 is divisible by 33744 if n is prime to 2, 3, 19

and 37.

31. When p + l and 2p + l are both prime numbers, shew that
«**— 1 is divisible by 8(p + l)(2/) + l), if x is prime to 2, £> + l,and
2p+h

32. If p is a prime, and X prime to p, shew that xp1 ~pV - 1 is

divisible by pr
.

33. If m is a prime number, and a, b two numbers less than m,
prove that

am - 2 + am ~ 3 b+ am - 4
b'
i+ + bm ~ 2

is a multiple of m.

423. If a is any number, then any other number N may
be expressed in the form N = aq + r, where q is the integral
quotient when N is divided by a, and r is a remainder less than a.

The number a, to which the other is referred, is sometimes called

the modulus ; and to any given modulus a there are a different
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forms of a number iV, each form corresponding to a different

value of r. Thus to modulus 3, we have numbers of the form

3<7, 3q + l, 3q + 2; or, more simply, 3q, 3q±l, since 3q + 2 is

equal to 3 (q+ 1) - 1. In like manner to modulus 5 any numbe^
will be one of the five forms 5q, 5q ± 1, 5q ± 2.

424. If 6, c are two integers, which when divided by a
leave the same remainder, they are said to be congruent with

respect to the modulus a. In this case b — c is a multiple of a, and
following the notation of Gauss we shall sometimes express this

as follows

:

b = c (mod. a), or b - c=0 (mod. a).

Either of these formulae is called a congruence.

425. If b, c are congruent with respect to modulus a, then

pb and pc are congruent, p being any integer.

For, by supposition, b - c = ?za, where w is some integer

;

therefore ])b — pc — pna ; which proves the proposition.

426. If a is prime to b, and the quantities

a, 2a, 3a, (b — 1 ) a

are divided by b, the remainders are all different.

For if possible, suppose that two of the quantities ma and
ma when divided by b leave the same remainder r, so that

ma = qb + r, m'a = q'b + r

;

then (m - 7/1') a = (q-q')b
;

therefore b divides (m — m') a ; hence it must divide m — m', since

it is prime to a ; but this is impossible since m and m' are each

less than b.

Thus the remainders are all different, and since none of the

quantities is exactly divisible by b, the remainders must be the

terms of the series 1, 2, 3, b — 1, but not necessarily in this

order.

Cor. If a is prime to b, and c is any number, the b terms
of the a. p.

c, c + a, c + 2a, c + (b — 1) a,
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when divided by b will leave the same remainders as the terms

of the series

c, c+ 1, c+ 2, c + (b- 1),

though not necessarily in this order ; and therefore the re-

mainders will be 0, 1, 2, b- 1.

427. -(/"b., b.j b
3 , ... are respectively congruent to cn c„, c

}
, ...

wn7A regard to modulus a, £/te?i //te products b,b
a
b

a
..., ^c.c.^ ...

(o-tf also congruent.

For by supposition,

b
1
-c

l

= n
x
a, b

2
-c

2
= u

2
a, b

3
-c

:i
u./i, ...

where nlt
n

2 , n
3

... are integers;

. •. b
x
b
a
b
a

... =(<?! + »,») (c
a
+ rc

2«) (c
a
+ w

:j

a) . .

.

= c,c
2
c
3

... +M (a),

which proves the proposition.

428. We can now give another proof of Fermat's Theorem.

If p be a prime number and N prime to p, then N 1
'
-1 — 1 is

a multiple of p.

Since JV and p are prime to each other, the numbers

if, 2tf, 3.V, (p-l)iV (1),

when divided by p leave the remainders

1, 2, 3, (p-1) (2),

though not necessarily in this order. Therefore the product of

all the terms in (1) is congruent to the product of all the terms
in (2), p being the modulus.

That is, |^—1 N''~
i and \p - 1 leave the same remainder when

divided by p ; hence

but i^—l is prime to p ; therefore it follows that

JP" 1 - 1 =M (j>).

429. We shall denote the number of integers less than a

number a and prime to it by the symbol
<f>

(a) ; thus <f>(2) = 1
;

<£(13) = 12; </>(18) = G; the integers less than 18 and prime to

it being 1, 5, 7, 11, 13, 17. It will be seen that we here

consider unity as prime to all numbers.
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430. To shew that if the numbers a, b, c, d, ... are prime to

each other,

(f>
(abccl . . .) = <£ (a) . </> (b) . <£ (c) . . . .

Consider the product ab ; then the first ab numbers can be

written in b lines, each line containing a numbers ; thus

1, 2, k, a,

a+l, a + 2, a + k, a + a,

2a +1, 2a + 2, 2a + k, 2a + a,

(&_ \) a + 1, (6- 1) a + 2, ... (b-l)a + k, ... (b - 1) a + a.

Let us consider the vertical column which begins with h ; if

k is prime to a all the terms of this column will be prime to a

;

but if k and a have a common divisor, no number in the column

will be prime to a. Now the first row contains <£ (a) numbers
prime to a \ therefore there are <£ (a) vertical columns in each

of which every term is prime to a ; let us suppose that the

vertical column which begins with k is one of these. This column

is an A. p., the terms of which when divided by b leave remainders

0, 1, 2, 3, ... 6 — 1 [Art. 426 Cor.]; hence the column contains

<£ (b) integers prime to b.

Similarly, each of the </> (a) vertical columns in which every

term is prime to a contain <£ (b) integers prime to b ; hence in the

table there are
<f>

(a) . cj> (b) integers which are prime to a and

also to by and therefore to ab ; that is

<£ (ab) - <£ (a) . <£ (6).

Therefore cf> (abed ...) = <f>
(a) . <j> (bed . .

.)

= cj> (a) . (f)(b) . <j> (cd ...)

= <f>(a).<t>(b).<t>(c).<}>(d)....

431. To find the number of positive integers less than a

given number, and prime to it.

Let JV denote the number, and suppose that JV = apbqc
r

...

,

where a, b, c, ... are different prime numbers, and p, q, r ...

positive integers. Consider the factor a1
' ; of the natural num-

bers 1, 2, 3, ... ap — 1, ap, the only ones not prime to a are

a, 2a, 3a, ... (a*-
1 - I) a, (a1" 1

) a,
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and the number of these is a''~
i

; hence

4> (av) = a" - a'-' =a?(l- -^ .

Now all the factors ap
, b'\ c\ ... are prime to each other

;

. \ </> (a)Vc
r

. . .) = <j> (a
1
') . </> (b

1

) . (c
r

) . .

.

-H)-H)-H)-
^••K)H)H)-

that is, ^W = iir(i-i)(i-J)(i-I)....

Example. Shew that the sum of all the integers which are less than N
and prime to it is ^N<p (N).

If x is any integer less than N and prime to it, then N-x is also an
integer less than N and prime to it.

Denote the integers by 1, p, q, r, ... , and their sum by S; then

S= l+p + q + r+... + (N-r) + {N-q) + (N-p) + {N-l),

the series consisting of (N) terms.

Writing the series in the reverse order,

S = {N-l) + (N-p) + (N-q) + (N-r)+...+r + q+p + l;

.-. by addition, 2S =N +N+N+ ... to <p (N) terms;

.-. S = $N<p(N).

432. From the last article it follows that the number of

integers which are less than J¥ and not prime to it is

'-'(.4>(>-i)(»
:
3("i)-'

tliat is,

N N N N N N N_++_+..._ .
. . + + ....

a b c ao ac be abc

N
Here the term — gives the number of the integers

a, la, da, ... — .a
(t

N
which contain a as a factor; the term —= gives the number of

ao

H. II. A. 23
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N . .

the integers ab, 2ab, Sab, ... -j ab, which contain ab as a factor,
ao

and so on. Further, every integer is reckoned once, and once

only ; thus, each multiple of ab will appear once among the

multiples of a, once among the multiples of b, and once negatively

among the multiples of ab, and is thus reckoned once only.

iV N N
Again, each multiple of abc will appear among the —

, j- ,
—

a o c

terms which are multiples of a, b, c respectively; among the

JV & iV— , — , =- terms which are multiples of ab, ac, be respectively
;

ab' ac' be
r ' r J '

and among the -j- multiples of abc; that is, since 3-3+1 = 1,

each multiple of abc occurs once, and once only. Similarly, other

cases may be discussed.

433. [Wilson's Theorem.] If -p be a prime number, 1 + \p - 1

» is divisible by p.

By Ex. 2, Art. 314 we have

Ijp-1 = (P~ i)""
1 - (P - i) (P - 2r ' + ^z^ipD (p - $y->

Jp-l)(p 2)(p-3)
{p

_ irl+ top _ lterms .

and by Fermat's Theorem each of tlie expressions (j) - l)p
~

l

,

(p-2)p~\ (p-2>y~\ ... is of the form 1 +M(p)-, thus

p-l = M(p) +fl-(p-l) + (P~
l )(P~ 2

) -...top- I terms!

=M(p) + {(i-iy->-(-iy->}

= M(p) — 1, since p — 1 is even.

Therefore 1 + Ip - 1 =M (p).

This theorem is only true when p is prime. For suppose p
has a factor q; then q is less than p and must divide \p — 1 ; hence

1 + \p — 1 is not a multiple of q, and therefore not a multiple of p.

Wilson's Theorem may also be proved without using the

result quoted from Art. 314, as in the following article.
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434. [Wilson's Theorem.] If p be a prime number, 1 + lp—

1

is divisible by p.

Let a denote any one of the numbers

1, 2, 3, 4
5

... (p-1) (1),

then a is prime to p, and if the products

\.a, 2. a, 3. a, (^; — 1 ) a

are divided by p, one and only one of them leaves the re-

mainder 1. [Art. 426.]

Let this be the product ma; then we can shew that the
numbers m and a are different unless a=j)~ 1 or 1- For if a2

were to give remainder 1 on division by^>, we should have

a~ - 1 = (mod. p),

and since p is prime, this can only be the case when a + 1 - p,
or a — 1 — 0; that is, when a=p— 1 or 1.

Hence one and only one of the products 2a, 3a, ... (p — 2) a
gives remainder 1 when divided by p ; that is, for any one of the
series of numbers in (1), excluding the first and last, it is

possible to find one other, such that the product of the pair is of
the form M (p) + 1

.

Therefore the integers 2, 3, 4, ... (p-2), the number of
which is even, can be associated in pairs such that the product of

each pair is of the form M (j?) + 1

.

Therefore by multiplying all these pairs together, we have

2.3.4 ... (p-2) = M(p) + l;

thatis, 1.2.3.4 ... (p-l) = (p-l){M(p) + l}
;

whence \p - 1 =M (p) +p - 1
j

or 1 + 1^ — 1 is a multiple of p.

Cor. If 2p + l is a prime number /jp\
2 + (- iy is divisible

by 2p + l.

For by Wilson's Theorem 1 + \2p is divisible by 2p + 1 . Put

n = 2p + 1, so that p+ 1 =n —p ; then

\2p = 1.2.3.4 p(p+l)(p + 2) (n-1)
= 1 (w-1) 2(n-2) 3(»-3) ... p (n-p)
= a multiple of n + (- iy (\p)

2
.

Therefore 1 + (
- l)p

(\p)
2

is divisible by n or 2p + 1, and

therefore (|^)
2 + (— l/ is divisible by 2;;+l.

23—2
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435. Many theorems relating to the properties of numbers
can be proved by induction.

Example 1 . If p is a prime number, xp - x is divisible by p.

Let xp - x be denoted by f(x) ; then

/ (x + 1) -/ (x) = {x + 1)p - (x + 1) - {xP - x)

=pxp~l +P<f~
1)

*p
"2 + . .

.
+px

J. • a

= a multiple of p, ifp is prime [Art. 419.]

.-. f(x + 1) =f(x) + a multiple of p.

If therefore/^) is divisible by^i, so also is/(.r + l); but

/(2) = 2*5 ~ 2 = (1 + 1)^-2,

and this is a multiple of p when p is prime [Art. 419] ; therefore / (3) is divisible

by p, therefore /(4) is divisible by^, and so on; thus the proposition is true

universally.

This furnishes another proof of Fermat's theorem, for if x is prime to p,

it follows that xp
~ J - 1 is a multiple of p.

Example 2. Prove that 52,l+2 - 24/i - 25 is divisible by 576.

Let 52n+2 - 24?i - 25 be denoted by f(n)

;

then /(?i+l) = 52n+4 -24(w + l)-25

= 52 .52w+2 -24n-49;

.-. f(n+l) - 25/ (n) =25 (24n + 25) - 24u - 49

= 576 (n + 1).

Therefore if f(n) is divisible by 576, so also is /(u + 1); but by trial we
see that the theorem is true when n= l, therefore it is true when n=2, there-

fore it is true when ?i= 3, and so on; thus it is true universally.

The above result may also be proved as follows

:

52n+2 _ 2in - 25= 25M+1 - 24;i - 25

= 25 (1 + 24)" -24rc-25

= 25 + 25 . n . 24 +M (242
) - 24n - 25

= 576n + iW(576)

= i)/(576).

EXAMPLES. XXX. b.

1. Shew that 10n+ 3 . 4" + 2+ 5 is divisible by 9.

2. Shew that 2 . 7n+ 3 . 5H - 5 is a multiple of 24.

3. Shew that 4 . 6n + 5n + x when divided by 20 leaves remainder 9.

4. Shew that 8 . 7n+ 4" + 2 is of the form 24 (2r - 1).
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5. If p is prime, shew that 2 \p-3+ l is a multiple ofp.

6. Shew that a v, + l -a is divisible 1>y 30.

7. Shew that the highest power of 2 contained in 2r
1 is

2''-;--l.

8. Shew that 34 '1 + - + 5 2 '1 +* is a multiple of 14.

9. Shew that 3**+6+160»a - 56n- 243 is divisible l»y 512.

10. Prove that the sum of the coefficients of the odd powers of x
in the expansion of (l+ <r+#2+ #3 + .r

4
)

n "" 1
, when n is a prime number

other than 5, is divisible by n.

11. If n is a prime number greater than 7, shew that n°-l is

divisible by 504.

12. If n is an odd number, prove that ?i*
5+ 3>i4+ 7>i2 - 11 is a

multiple of 128.

13. If p is a prime number, shew that the coefficients of the terms
of (H-a?)*-* are alternately greater and less by unity than some mul-
tiple ofp.

14. If p is a prime, shew that the sum of the (p-l) th powers of
any p numbers in arithmetical progression, wherein the common differ-

ence is not divisible by p, is less by 1 than a multiple of p.

15. Shew that a12 -

b

12 is divisible by 91, if a and b are both prime
to 91.

16. If p is a prime, shew that \p -2r
1

2r - 1 - 1 is divisible by p.

17. If n— 1, n + 1 are both prime numbers greater than 5, shew
that n(?i2 -4) is divisible by 120, and ?i

2
(>i

2 + 16) by 720. Also shew
that n must be of the form 30£ or 30^ + 12.

18. Shew that the highest power of n which is contained in \nr ~ 1

, . nr— nr+ r- 1
is equal to .

n- 1

19. If p is a prime number, and a prime to ]), and if a square
number c2 can be found such that c2 — a is divisible by pt

shew that
l(p-D
a2 - 1 is divisible by p.

20. Find the general solution of the congruence

98a;- 1=0 (mod. 139).
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21. Shew that the sum of the squares of all the numbers less than

a given number N and prime to it is

?(i--30-J)0-9-+ ?ci-.»a-.)a-*-.

and the sum of the cubes is

?(i-3(x-])(t-9-+ ?a-^ci-«a-*.,

a,b,c... being the different prime factors of iV.

22. If jt? and q are any two positive integers, shew that \pq is

divisible by (|£>)«. |# and by (\q)
p

. \p.

23. Shew that the square numbers which are also triangular are

given by the squares of the coefficients of the powers of x in the ex-

pansion of r- 2> an<^ ^hat the square numbers which are also
L — \)X -f" X

pentagonal by the coefficients of the powers of x in the expansion of

1_

24. Shew that the sum of the fourth powers of all the numbers
less than N and prime to it is

5 \ a

-gg(l-<*)(l-i»)(l -«*)...,

a, 6, c,... being the different prime factors of A".

25. If
(f>

(iV) is the number of integers which are less than JV and
prime to it, and if x is prime to JV, shew that

^^- 1 = (mod. JV).

26. If dv d2 , ds , ... denote the divisors of a number JV, then

(f>
(dj + (c?

2) + <£ (d3) + ... =iV.

Shew also that

<t> (!) r-
;—9~0(3 ) r1

;—fi
+ 0(5)T^

—

™ - --- odinf. = -
?
~

l

—kJ.



* CHAPTER XXXI.

The General Theory of Continued Fractions.

*-436. In Chap. xxv. we have investigated the properties of

Continued Fractions of the form a, + -— -
. . .

, where a , a , . .

.

«,+ %+ 2 ' 3 '

are positive integers, and a^ is either a positive integer or zero.

We shall now consider continued fractions of a more general
type.

*-i37. The most general form of a continued fraction is

~'
„ "i rZl '

where a
i>

a
2>

a
3> ••> *,» K K ••• represent

a
1

=*= «
2
* a

3
=*=

any quantities whatever.

The fractions — , — , —
, . . . are called components of the

a, a
2

a
3

continued fraction. We shall confine our attention to two cases;

(i) that in which the sign before each component is positive

;

(ii) that in which the sign is negative.

*438. To investigate the law offormation of the successive

convergents to the continued fraction

b
i

b
2

b
3

ergents are

6, a
2
b

x
a

3
.a

2
b

i

+b
3
.b

l

The first three convergents are

AVe see that the numerator of the third convergent may be

formed by multiplying the numerator of the second convergent by
a

3 , and the numerator of the first by b
3
and adding the results

together ; also that the denominator may be formed in like

manner.
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Suppose that the successive convergents are formed in a

similar way; let the numerators be denoted by pit p 2 , p3
...,

and the denominators by q lt q2 , q3 , ...

Assume that the law of formation holds for the nth con-

vergent ; that is, suppose

p -a p , + b p „, q =a q ,
+ bq _.In nl n — \ n-l n— 2> J-

n

n-Ln— 1 h-Ih—2

The (n+l)th convergent differs from the wth only in having

a h—— in the place of a ; hence
a

n + \

the (n+ l)tb convergent

If therefore we put

?> ^,=a nP +b ,,p ,, q + ,
= a +,q +b ,,q ,,

we see that the numerator and denominator of the (u + l)th con-

vergent follow the law which was supposed to hold in case of the

?t
th

. But the law does hold in the case of the third convergent

;

hence it holds for the fourth ; and so on ; therefore it holds

universally.

*-439. In the case of the continued fraction

b, b 2 b
3

«1 - a
2
~ CC3

~

we may prove that

Vn = anPn-l ~ kPn-* , Qn = »«?«-! ~ k<ln-2 ',

a result which may be deduced from that of the preceding article

by changing the sign of b
n

.

*440. In the continued fraction

h K K
a

1
+ a

2 + «
3
+

we have seen that

p =a p ,+bp „, q ^a q ,+bq a .
J- n nl ii— \ n-L n— 2' J-n n-ln — 1 n-J-n—2



but

GENERAL THEOHY OF CONTINUED FRACTIONS. Ml

?„ + , \9n Qn-J'

and is therefore a proper fraction: hence "
+ 1 — — is numerically

&.+1 ft

less than — — —— , and is of opposite sign.
In In-}

By reasoning as in Art. 335, we may shew that every con-

vergent of an odd order is greater than the continued fraction,

and every convergent of an even order is less than the continued
fraction ; hence every convergent of an odd order is greater than
every convergent of an even order.

Thus 2--'^ -^ is positive and less than £ss=l - ^2
" ; hence

32/1+] 9an 2ft*-J 2*2/1

2 2/1 + 1 1 2/1— 1

2 2/1 + 1 2 2/1-1

Also ?*=i - 2---1

is positive and less than ^=* - &=s hence
22/1 — 1 22/1 22/1 — 1 22/1-2

2 2/1 2 2/1— 2

2 2/1 2 2/1 — 2

Hence the convergents of an odd order are all greater than
the continued fraction but continually decrease, and the con-

vergents of an even order are all less than the continued fraction

but continually increase.

Suppose now that the number of components is infinite, then
the convergents of an odd order must tend to some finite limit,

and the convergents of an even order must also tend to some
finite limit ; if these limits are equal the continued fraction tends
to one definite limit ; if they are not equal, the odd convergents

tend to one limit, and the even convergents tend to a different

limit, and the continued fraction may be said to be oscillating; in

this case the continued fraction is the symbolical representation of

two quantities, one of which is the limit of the odd, and the other

that of the even convergents.
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*441. To shew that the continued fraction
a

x
+ a

2
+ a

3
+

has a definite value if the limit of rf""
n+I when n is infinite is

greater than zero.

The continued fraction will have a definite value when n is

infinite if the difference of the limits of -^ and — is equal to zero.

9n+l ?«

Now

whence we obtain

n+lffn-l fPn _ Pn-1

?«+! W« £«-!>

Pjt+X

<2n+l

_ £» = (_ 1
)-l 6"+^»-l &ng»-3 KV* KVl (P* _ Pl\

But
k.-i? k.-M?n+lin-1

li+1 !7u + ^B+lS'n-l an+l Qn + J

k^g

an(
an+l qn a. i K?-i + &«£«-*) _ «*»«+!

+
^n+A^-2

.

"n+lSn-l ^n+lSn-l ^n+1 b^
xqK

also neither of these terms can be negative; hence if the limit of

" n+1
is greater than zero so also is the limit of

"+
; in which

case the limit of -J**^ is less than 1 : and therefore ^±i_ -^ £a

Qn+i
m t

q„+i qn
the limit of the product of an infinite number of proper fractions,

and must therefore be equal to zero : that is, -^ and -- tend to
?«+: qn

the same limit ; which proves the proposition.

.For example, in the continued fraction

V T- 3- n~

3+5

a.

a

2n+l +
• •

»

Lim -f-^-
1 = Lim- .

7
\, 2

-' = 4 :

*«+i (n+iy

and therefore the continued fraction tends to a definite limit.
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*442. In the continued fraction
c\i, cl H;„

1 2 A

if the denominator of every component exceeds the numerator by
unity at least, the convergents are positive fractions in ascending

order of magnitude.

By supposition —
' , -* , —3

, . . . are positive proper fractions
a

i

a
2

a
?

in each of which the denominator exceeds the numerator by

unity at least. The second convergent is 1
, and since a

i

a - -2

exceeds ft
t
by unity at least, and -* is a proper fraction, it follows

tliat «,
2

is greater than ft,; that is, the second convergent is

a positive proper fraction. In like manner it may be shewn

that 2
, is a positive proper fraction ; denote it by f, then

the third convergent is —! -.
, and is therefore a positive proper

fraction. Similarly we may shew that —— —— — is a positive

proper fraction ; hence also the fourth convergent

ft, K K K
«1 - CV

2 ~ %~ a
,

is a positive proper fraction ; and so on.

Again, p — a p ,
— ft p ., q—aa ,

— ft q „ ;O ' i ii nl ii — 1 »/ n — 2' 2 ii iuii- I niii- 2 '

^

2

ie same sign.hence ^s±J - ^ and ;-n - ^=* have tl

But P °~ - ^ =
g«\ - -1 =

h-^
, and is therefore positive

;

92 <?i <V*2
-ft

2
r
'i <M2

hence ^2 >^
,
^ > ^-2

,
^>^?3

; and so on; which proves the

9jt 7,
(l, 7, <74 %

proposition.
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Cor. If the number of the components is infinite, the con-

vergents form an infinite series of proper fractions in ascending

order of magnitude ; and in this case the continued fraction must
tend to a definite limit which cannot exceed unity.

*443. From the formula

Pn = <*nPn-i + hPn-t* 9n = a&n-, + &.&_«>

we may always determine in succession as many of the con-

vergent^ as we please. In certain cases, however, a general

expression can be found for the 11
th convergent.

c c c
Example. To find the wth convergent to -

—

5- 5- 5-

We have pn= Sp,^ - 6pn_2 ; hence the numerators form a recurring series

any three consecutive terms of which are connected by the relation

Pn " 5p«-! + §Pn-2'

Let S=p1 +p.2x +Prf? + • • • +pnx
n~1 + .

.

.

;

Pl + (P2~ 5Pl) X
then, as in Art. 325, we have S=

1 - 5x + 6a;2

But the first two convergents are - , =-^

;

6 18 12

1 - hx + Qx- l-3x 1 - 2x
'

whence pn= 18 .
3"- 1 - 12 .

2'1"1= 6 (3" - 2").

Similarly if S'= q x + q& + q3x* +...+ qnx
n~ x + . .

.

,

we find ^=___ =
i
___

r
_

;J

whence gn= 9 .
3*-1 - 4 .

2*- 1 = S'^1 - 2'l+]
.

yw _ 6(3"-2w
)

"""

ffn
~ 3n+1 - 2?l+1

'

This method will only succeed when a„ and bn
are constant

for all values of n. Thus in the case of the continued fraction

... , we may shew that the numerators of the
a + a+ a+
successive convergents are the coefficients of the powers of x in

the expansion of ^ 7-2 , and the denominators are the

ft -I- ti /Y*

coefficients of the powers of x in the expansion of ^ 7-2 .

1 ~~ OjX — ox
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*444. For the investigation of the general values of pn and qn
the student is referred to works on Finite Differences ; it is only

in special cases that these values can be found by Algebra. The
following method will sometimes be found useful.

12 3
Example. Find the value of -— =— 5—

1 + z + o +

The same law of formation holds for pn and q n ; let us tal<e i*n to denote

either of them ; then un= nun_x
+ nun_ 2 ,

un - (n + 1) «„_! = - (uB_, - ?w n_2).

Similarly, i^j - RU
tt
_s= - («u_ 2 -ra- 1 «n_3 ).

or

whence by multiplication, we obtain

un -(n + l)u n_ 1
= (-iy^(u2

-3u
i
).

1 2
The first two convergents are -

, T ; hence
1 -A

pn -(n + l) Pn^=(-l) n-\ q n -(n + l)qn-i = (- I)""2-

Tims ^n Pn-1 (" !)
?l-l

0n gn-1 _ (~ I)""2

7i+ l m lra+1 iw+l to j» + l '

At! _ Art = (~ l)"- 8

In |n-l In

ffn-1 9»-2

In n -

1

In

Ps_Pi
13 |2'

2

1

2'

?3 _ <h

3 2

1

[3'

'2 2 |2'

3i

whence, by addition

|n + l 12 |3
+

|4
+

7 a , 1 1 1
= 1-7^+1i- "77 +n+1 |2 |3 |1

Lit1
.

j

n+1 '

,
(- l)n

~a

n + 1

By making n infinite, we obtain

e) e-V2n e

which is therefore the value of the given expression
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*445. If every component of —— —— —— ... is a proper
3j

j
+ a o + a

3
+

fraction with integral numerator and denominator, the continued

fraction is incommensurable.

For if possible, suppose that the continued fraction is com-

mensurable and equal to -^ ,
where A and B are positive integers

;

XL

then -7 = *—m , where f, denotes the infinite continued fraction

—

*

^- ... ; hence f =

—

*—-—- = ^ suppose. Now A, B, «
x , 6

X

are integers and f is positive, therefore C is a positive integer.

C b
Similarly -= = —*-=

, where fa denotes the infinite continued
J B a

2+f
fraction —*- —*- . .

.
; hence / = —S^ * = 7* suppose ; and as

a
3
+ a +

before, it follows that D is a positive integer ; and so on.

. . B C D , .. , 5 . ,

Again, -7 ,
=

, jy , ... are proper tractions ; tor -j is less

than — , which is a proper fraction : = is less than -* ; -^ is
a

x
B a

s
O

less than —
; and so on.

Thus A, B, C, D, ... form an infinite series of positive integers

in descending order of magnitude ; which is absurd. Hence the

given fraction cannot be commensurable.

The above result still holds if some of the components are

not proper fractions, provided that from and after a fixed com-

ponent all the others are proper fractions.

For suppose that — and all the succeeding components are
n

proper fractions ; thus, as we have just proved, the infinite con-

tinued fraction beginning with -s is incommensurable ; denote
a
n

7) k
it by k, then the complete quotient corresponding to —n is

^
in

and therefore the value of the continued fraction is ^-^—/ "~ 2
.

9n-l + hn-2



GENERAL THEORY OF CONTINUED FRACTIONS. 3G7

V P
This cannot be commensurable unless —n_1 = l-^^ • and this

tfn-l ?«-«

condition cannot hold unless ?2=a= *-=2 ,
Pn=B = P^*

t
;ultl

?n-a ?n-3 Qn-z 9n-4

P P
finally H= —

; that is £>6 = 0, which is impossible ; hence the
% . ?,

given fraction must be incommensurable.

1 1 K
*446. //* eirary component of —- —«- —*- ... ?'s a proper

a
i
"" a

a
~ a

3
""

fraction with integral numerator and denominator, and if the

value of the infinite continued fraction beginning with any com-
ponent is less than unity, the fraction is incommensurable.

The demonstration is similar to that of the preceding article.

* EXAMPLES. XXXI. a.

1. Shew that in the continued fraction

\ _h h_
a

x
- a2

- a
3
- '

Pn= anPn - 1 ~ ^nPn - 2 J Qn= an9.n -\~ "?i?n - 2

"m2. Convert
|

'^- - ) into a continued fraction with unit nume-
rators.

3. Shew that

« V*+6=«+^ ^
(2) V^=«-

2|_ ±r. .......

4. In the continued fraction —— —— —— .... if the denominator
«1~ a%~ a3~

of every component exceed the numerator by unity at least, shew that

pn and qn increase with n.

5. If alf a,, rtg,..^,, are in harmonical progression, shew that

an 1 1 1 1 «2^"2^ 2^ 2~=" 2^ SJ'
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6. Shew that

cc+ -—- -—- ... + [a - ... = 2a2
,

V 2a+ 2a + J V 2a- 2a- J

\/ 1 1 \ ,

7T- o^--)= a ~and ( a + s —: ...
) ( a -

2«+ 2a+"7\ 2a- 2a- "7 2a2 - 2a'2

7. In the continued fraction

b b b

a+ a+ a+

shew that pn + x
= 6an , bqn + 1

- apn +

1

=%n _ x
.

b b b ax — 8P
8. Shew that — - = 6.-^7—^n ia+ a+ a+ ax + 1 — px + 1

.v being the number of components, and a, /3 the roots of the equation

k2 — ak — b= 0.

9. Prove that the product of the continued fractions

J_ L _L A_ ,7 _1_ J_ J_ _x
_

6+ c+ d+ a+ '"' -c + -6+ -a+ -0?+ '"'

is equal to — 1

.

Shew that

1 4 9 64 (?i
2 -l)2 (n + l)(w + 2)(2/i+ 3)

10.

11.

12.

1- 5- 13- 25- »2+(»+l)2 6

-L JL _§_
^2 ~1

_ ?*fo+ 3)

1- 5- 7- 2» + l~ 2 '

£- i ji- £±L 5±|-1+i+i«+ |. + ...+|«.2- 3- 4- ?i + l— ?i+ 2 I—
!

—

L_

13.
!> «* -2=1 =.-1.
1- 3- 4- 5- w+l-

14.

15.

4 6 8 2/i+ 2 2(e2 -l)

1+ 2+ 3+ n+ e2 +l

3.3 3.4 3.5 3(n+ 2) _'6(2e3+l)

1+ 2+ 3+ n+ " 5e3 -2

16. If u, = v, Ucy = f , Uo = —f , , each successive fraction
1 a a+ e> •* a+ 26

bein» formed by taking the denominator and the sum of the numerator
and denominator of the preceding fraction for its numerator and denomi-

nator respectively, shew that u„=**—=— .
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17. Prove that the nih convergent to the continued fraction

J' f )' y'H +1 y.

isr+l- r+l- r+l- »*+1-l
'

18. Find the value of —\ % %
cij + l- a.,+ l- a3+l-

'

a19 a2 > a3v being positive and greater than unity.

19. Shew that the nlh convergent to 1 - -— - is equal to

the (2m — 1 )
lh convergent to n

— -— ,— -—v ; 6 1+2+1+ 2 +

20. Shew that the 3nth convergent to

1111111 n
is

21. Shew that

5- 2- 1- 5- 2- 1- 5- 3>i + l

1 2 3 3-d
2+ 3+ 4+ e-2 '

hence shew that e lies between 2§ and 2 r
8
T .

Conversion of Series into Continued Fractions.

*417. It will be convenient here to write the series in the form

Put

1 1 1— +— + — +..
^6

1

u
2

u
3

1 1
• —
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Similarly,
211111 1 u

y— + — + —=— + =— ——

-

u
x

u
2

u
3

u
x

u
s
+ x

2
u

x

- u
x
+ u

2
+ x

a12 2u
x

UQ

u
x
- u

x
+ u

2
— u

2
+ u

3

'

and so on ; hence generally

1 1 1
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1 x 1
By putting — =

,

, . • "n x
we obtain V,l= ;

an+l - anx

hence we have

X .T
3

.T
3 XA X (IfX <i

2
2x <i.."x

<l
l

rt2 (l 3
(J

i
('l + a2~ a

l
X + a3~ U,2X + a ,~ a ix +

x Vx 2°-x 3 2
.r

.-. log (! + *) =
1+ 2-x+ 3-2x+ ~i-Sx +

*44S. In certain cases we may simplify the components of the

continued fraction by the help of the following proposition :

The continued fraction

&. K h K
a

x
+ a

2
+ a

3
+ a

4
+

is equal to the continued fraction

CA 5CA ^3 C
3
CA ...

•

c
x
a

x
+ c

2
a

2
+ c

3
a
3
+ c/c

4
+

where cn c
2 , c

3 , c
4 ,

are any quantities whatever.

7 7

Let /" denote —— —— ; tlien

the continued fraction =
«i +/i ci«i + ci/i

Let /„ denote 3- —— ... ; then

«2 +/2
C2<\.

+ C
2X-

'

£ Q Q
Similarly, c f = - - '^-~

; and so on; whence the proposition
C
3
rt

3
+ GJ3

is established.

24—2
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^EXAMPLES. XXXI. b.

Shew that

1111
, ,. 1

1. + + + (-l) Jl —
UQ Wj u 2

m
3 un

1 ic
2 u

t
2 u2

n _n-1
« + Mj - U

Q+ U.2
- ?<<! + Un ~ un lvn-l

1 X X2 a?
2. -+-— + + +

3.

&n ClfiCCt Cl^Qz-tCto CIqCC -iCt-v • • • &JI

J. Ctry.0 iX-xJu ^n 1 *^

r—\ r r+1 ?'+ 2

?• - 2
~~ »~ r+ 1- r+ 2-

.2^ 1111
,

...
4. —^—^— -.— ,— -.— to n quotients.

n+l 1-4-1—4-
r , 11 1114 9 n2

5. l + s + « + +
2 3 ?i+l 1- 3- 5- 7- 2n+l

11 111 4
?i
4

6. i»+oa+ +
l 2 ' 22 (n+ 1)

2 1- l 2+ 2 2 - n*+(n+Yf'

x x 2x 3x
7. ex= l + 1- x + 2- x+ S- x+4-

- 1111 la
8. r + -i 5—, + ...= —

-

a ab abc abed a+ b-l+ c— 1+ d—l +

- , 1 1 1 1 1 r 7-3 r5

9. l+- + -i + -a + -iB+ ...=i+ rn— ,5 , , yr-r •••
r ?** ?

,J rlb r— r3 + 1 — r5+ 1 — r + 1 —

a
x+ a

2 + a
3 +

' an 1+ «
x + «

2 -f «
3+ '

' <(„_H-l

u. if p=4 ,4- 4- qa+ b+ c+ ' c b+ c+ d+ '

shew that P (a+ 1 + Q)=

a

+ Q.

o

12. Shew that 1 \- ... is equal to the con-
9i M2 Ms Mt

9* />» />»

tinued fraction —— .... where #., q„, a*. ... are the

denominators of the successive convergents.



CHAPTER XXXII.

PROBABILITY.

449. Definition. If an event can happen in a ways and fail in

b ways, and each of these ways is equally likely, the probability,

or the chance, of its happening is z , and that of its failing isrr ° a + b G

a+ b

'

For instance, if in a lottery there are 7 prizes and 25 blanks,

. 7
the chance that a person holding 1 ticket will win a prize is —

,

25
and his chance of not winning is — .

Oa

450. The reason for the mathematical definition of pro-

bability may be made clear by the following considerations :

If an event can happen in a ways and fail to happen in b

ways, and all these ways are equally likely, we can assert that the

chance of its happening is to the chance of its failing as a to b.

Thus if the chance of its happening is represented by ka, where
k is an undetermined constant, then the chance of its failing

will be represented by kb.

.-. chance of happening + chance of failing = k (a + b)

Now the event is certain to happen or to fail ; therefore the sum
of the chances of happening and failing must represent certainty.

If therefore we agree to take certainty as our unit, we have

1 = k (a + b), or k — T :
v ' a + b

.-. the chance that the event will happen is

and the chance that the event will not happen is

a + b

b

a + b

Cor. If p is the probability of the happening of an event,

the probability of its not happening is 1 —p.
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451. Instead of saying that the chance of the happening of

an event is T , it is sometimes stated that the odds are a to b
a + o

in favour of the event , or b to a against the event.

452. The definition of probability in Art. 449 may be given

in a slightly different form which is sometimes Useful. If c is the

total number of cases, each being equally likely to occur, and of

these a are favourable to the event, then the probability that the

event will happen is - , and the probability that it will not
c

happen is 1 .

Example 1. What is the chance of throwing a number greater than 4

with an ordinary die whose faces are numbered from 1 to 6?

There are 6 possible ways in which the die can fall, and of these two
are favourable to the event required

;

therefore the required chance = - = - .

Example 2. From a bag containing 4 white and 5 black balls a man
draws 3 at random ; what are the odds against these being all black ?

The total number of ways in which 3 balls can be drawn is 9
<7

3 , and
the number of ways of drawing 3 black balls is 5C

3 ; therefore the chance
of drawing 3 black balls

~*C%
~ 9.8.7

=
42

'

Thus the odds against the event are 37 to 5.

Example 3. Find the chance of throwing at least one ace in a single

throw with two dice.

The possible number of cases is 6 x 6, or 36.

An ace on one die may be associated with any of the 6 numbers on the

other die, and the remaining 5 numbers on the first die may each be asso-

ciated with the ace on the second die ; thus the number of favourable cases

is 11.

Therefore the required chance is — .

3b

Or we may reason as follows :

There are 5 ways in which each die can be thrown so as not to give an
ace ; hence 25 throws of the two dice will exclude aces. That is, the chance

25
of not throwing one or more aces is ^ ; so that the chance of throwing one

36

ace at least is 1 - ^ , or ^,
do oo
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Example 4. Find the chance of throwing more than 15 in one throw with
3 dice.

A throw amounting to 18 must be made up of 6, G, G, and this can occur
in 1 way; 17 can be made up of G, G, 5 which can occur in 3 ways; 16 may
be made up of G, G, 4 and 6, 5, 5, each of which arrangements can occur in

3 ways.

Thereforo the number of favourable cases is

1 + 3 + 3 + 3, or 10.

And the total number of cases is 63
, or 21G;

therefore the required chance=^ =
21G 108

Example 5. A has 3 shares in a lottery in which there are 3 prizes and
6 blanks ; B has 1 share in a lottery in which there is 1 prize and 2 blanks :

shew that A's chance of success is to ZJ's as 1G to 7.

A may draw 3 prizes in 1 way

;

3 2
he may draw 2 prizes and 1 blank in —^— x 6 ways :

JL • m

6 .

5

he may draw 1 prize and 2 blanks in 3 x -r-^r ways

;

JL • m

the sum of these numbers is 64, which is the number of ways in which A can
9.8.7

win a prize. Also he can draw 3 tickets in '
'

, or 84 ways

;

therefore -4's chance of success= —
r = —- .

84 21

Z»"s chance of success is clearly -
;

o

1 C 1

therefore A 's chance : B's chancer— :
-

— L O

= 16 : 7.

6.5.4
Or we might have reasoned thus: A will get all blanks in *

'
, or

20 5
20 ways ; the chance of which is —-.

, or — ;J '

84 21

therefore A's chance of success = 1 -— = -—.
— 1 ZL

453. Suppose that there are a number of events A, B, C,...,

of which one must, and only one can, occur ; also suppose that

a, b, c, ... are the numbers of ways respectively in which these

events can happen, and that each of these ways is equally likely

to occur ; it is required to find the chance of eacli event.

The total number of equally possible ways is a + b + c+ ...,

and of these the number favourable to A is a; hence the chance
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that A will happen is =
. Similarly the chance that Brr a + b + c+ ...

J

will happen is -. : and so on.ri a + b + c + ...

454. From the examples we have given it will be seen that

the solution of the easier kinds of questions in Probability requires

nothing more than a knowledge of the definition of Probability,

and the application of the laws of Permutations and Combina-

tions.

EXAMPLES. XXXII. a.

1. In a single throw with two dice find the chances of throwing

(1) five, (2) six.

2. Prom a pack of 52 cards two are drawn at random ; find the

chance that one is a knave and the other a queen.

3. A bag contains 5 white, 7 black, and 4 red balls: find the

chance that three balls drawn at random are all white.

4. If four coins are tossed, find the chance that there should be
two heads and two tails.

5. One of two events must happen : given that the chance of the
one is two-thirds that of the other, find the odds in favour of the other.

6. If from a pack four cards are drawn, find the chance that they
will be the four honours of the same suit.

7. Thirteen persons take their places at a round table, shew that
it is five to one against two particular persons sitting together.

8. There are three events A, B, C, one of which must, and only
one can, happen; the odds are 8 to 3 against A, 5 to 2 against B: find

the odds against C.

9. Compare the chances of throwing 4 with one die, 8 with two
dice, and 12 with three dice.

10. In shuffling a pack of cards, four are accidentally dropped ; find

the chance that the missing cards should be one from each suit.

11. A has 3 shares in a lottery containing 3 prizes and 9 blanks

;

B has 2 shares in a lottery containing 2 prizes and 6 blanks : compare
their chances of success.

12. Shew that the chances of throwing six with 4, 3, or 2 dice
respectively are as 1 ; 6 ; 18,
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13. There are three works, one consisting of 3 volumes, one of 4,

and the other of 1 volume. They are placed on a shelf at random
;

prove that the chance that volumes of the same works are all together
3

18
140

'

14. -1 and B throw with two dice ; if A throws 9, find i>'s chance
of throwing a higher number.

15. The letters forming the word Clifton are placed at random in

a row : what is the chance that the two vowels come together ?

16. In a hand at whist what is the chance that the 4 kings are

held by a specified player ]

17. There are 4 shillings and 3 half-crowns placed at random in

a line : shew that the chance of the extreme coins being both half-

crowns is - . Generalize this result in the case of m shillings and

n half-crowns.

455. We have hitherto considered only those occurrences
which in the language of Probability are called Single events.

When two or more of these occur in connection with each other,

the joint occurrence is called a Confound event.

For example, suppose we have a bag containing 5 white
and 8 black balls, and two drawings, each of three balls, are

made from it successively. If we wish to estimate the chance
of chawing first 3 white and then 3 black balls, w^e should be
dealing with a compound event.

In such a case the result of the second drawing might or

might not be dependent on the result of the first. If the balls

are not replaced after being drawn, then if the first drawing gives

3 white balls, the ratio of the black to the white balls remaining
is greater than if the first drawing had not given three white;

thus the chance of drawing 3 black balls at the second trial

is affected by the result of the first. But if the balls are re-

placed after being drawn, it is clear that the result of the second

drawing is not in any way affected by the result of the first.

We are thus led to the following definition :

Events are said to be dependent or independent according as

the occurrence of one does or does not affect the occurrence of the

others. Dependent events are sometimes said to be contingent.
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456. If there are two independent events the respective pro-

babilities of which are known, to find the probability that both will

happen.

Suppose that the first event may happen in a ways and fail

in b ways, all these cases being equally likely ; and suppose that

the second event may happen in a' ways and fail in b' ways,

all these ways being equally likely. Each of the a + b cases may
be associated with each of the a + b' cases, to form (a + b) (a! + b')

compound cases all equally likely to occur.

In aa' of these both events happen, in bb' of them both fail,

in ab' of them the first happens and the second fails, and in a'b

of them the first fails and the second happens. Thus

aa

(a + b){a'+b')

bb'

(a + b)(a+b')

ab'

(a + b)(a'+b')

a'b

(a + b)(a'+b')

is the chance that both events happen

;

is the chance that both events fail

;

is the chance that the first happens and the second

fails

;

is the chance that the first fails and the second

happens.

Thus if the respective chances of two independent events are

p and p\ the chance that both will happen is pp'. Similar

reasoning will apply in the case of any number of independent

events. Hence it is easy to see that if plf p2 , p3 , ... are the

respective chances that a number of independent events will

separately happen, the chance that they will all happen is

p xp2p3 ... ; the chance that the two first will happen and the rest

fail is 2\Po (1 —P3) (1 —pj'- > and similarly for any other par-

ticular case.

457. If p is the chance that an event will happen in

one trial, the chance that it will happen in any assigned suc-

cession of r trials is p
r

'

; this follows from the preceding article

by supposing

P 1 =P2 =P3
= =P-

To find the chance that some one at least of the events will

happen we proceed thus : the chance that all the events fail

is (1 -p
x ) (1 -]).,) (1 -p3)

-.-j and except in this case some one
of the events must happen ; hence the required chance is
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Example 1. Two drawings, each of 3 balls, arc made from a bag con-

taining 5 wbitc and 8 black balls, the balls being replaced before tbe second
trial : find the chance that the first drawing will give 3 white, and the second
3 black balls.

The number of ways in which 3 balls may be drawn is 13C3 ;

3white 5C.,;

3black *C
Z

.

Therefore the chance of 3 white at the first trial = •—̂ -f-

and the chance of 3 black at the second trial

=

1.2" 1.2.3 143

'

8.7.6 13. 12. 11 _ 28

1.2.3
:

1.2.3
=
143*•j >

therefore the chance of the compound event =-- x "- = <
.

14o 143 20449

Example 2. In tossing a coin, find the chance of throwing head and tail

alternately in 3 successive trials.

Here the first throw must give either head or tail ; the chance that the

second gives the opposite to the first is -
, and the chance that the third throw

is the same as the first is ^ .

Therefore the chance of the compound event =- x = = -j .

2 2 4

Example 3. Supposing that it is 9 to 7 against a person A who is now
35 years of age living till he is 65, and 3 to 2 against a person B now 45

living till he is 75 ; find the chance that one at least of these persons will be

alive 30 years hence.

9
The chance that A will die within 30 years is — ;

3
the chance that B will die within 30 years is ^ ;

9 3 27
therefore the chance that both will die is ^ x '-

, or —- ;
lb o 8U

therefore the chance that both will not be dead, that is that one at least will

. .. . , 27 53
be alive, >sl-8o> or-.

458. By a slight modification of the meaning of the symbols
in Art. 45G, we are enabled to estimate the probability of the

concurrence of two dependent events. For suppose that when the

first event has happened^ a denotes the number of ways in which
the second event can follow, and b' the number of ways in which

it will not follow ; then the number of ways in which the two
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events can happen together is aa\ and the probability of their

aa
concurrence is -.

7 , , ,

—tr •

(« + o) (a + o
)

Thus if p is the probability of the first event, and p' the

contingent probability that the second will follow, the probability

of the concurrence of the two events is pp

.

Example 1. In a hand at whist find the chance that a specified player

holds both the king and queen of trumps.

Denote the player by A ; then the chance that A has the king is clearly

13
^; for this particular card can be dealt in 52 different ways, 13 of which fall

to A. The chance that, when he has the king, he can also hold the queen is

12
then — : for the queen can be dealt in 51 ways, 12 of which fall to A.

ol

m * « , . n 13 12 1
Therefore the chance required=— x ^ = ---

.u 52 ol 17

Or we might reason as follows :

The number of ways in which the king and the queen can be dealt to A is

equal to the number of permutations of 13 things 2 at a time, or 13 . 12.

And similarly the total number of ways in which the king and queen can be
dealt is 52 . 51.

13 . 12 1
Therefore the chance = „ * „„ = — , as before.

52.51 17

Example 2. Two drawings, each of 3 balls, are made from a bag con-

taining 5 white and 8 black balls, the balls not being replaced before the

second trial: find the chance that the first drawing will give 3 white and
the second 3 black balls.

At the first trial, 3 balls may be drawn in 13C3
ways

;

and 3 white balls may be drawn in 5C
3
ways;

5.4 13 . 12 . 11 5
therefore the chance of 3 white at first trial

:

1.2" 1.2.3 143

When 3 white balls have been drawn and removed, the bag contains

2 white and 8 black balls
;

therefore at the second trial 3 balls may be drawn in 10C3
ways

;

and 3 black balls may be drawn in 8C
3 ways ;

therefore the chance of 3 black at the second trial

8.7.6 . 10.9.8 _ 1_ m

"1.2.3 ' 1.2.3 ~ 15

'

therefore the chance of the compound event

5 7 7
x =-=

.

=
143 15 429

The student should compare this solution with that of Ex. 1, Art. 457.
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459. If an event can happen in ttvo or more different ways
which are mutually exclusive, the chance that it wilt happen is

the sum of the chances of its happening in these different ways.

This is sometimes regarded as a self-evident proposition arising

immediately out of the definition of probability. It may, how-
ever, be proved as follows :

Suppose the event can happen in two Avays which cannot

concur ; and let ^ ,
=* be the chances of the happening of the

event in these two ways respectively. Then out of bfi2
cases

there are a
x
b2 in which the event may happen in the first way,

and a b
J

ways in which the event may happen in the second;
and tliese ivays cannot concur. Therefore in all, out of b

l
b
2
cases

there are a,b„ + a
k
,b, cases favourable to the event: hence the

chance that the event will happen in one or other of the two
ways is

a
x

b
2
+ a

2
b

x
a_

x
a,

bh 6, bf12

Similar reasoning will apply whatever be the number of ex-

clusive ways in which the event can happen.

Hence if an event can happen in n ways which are mutually
exclusive, and if plt pa , p^ ---Pn are the probabilities that the

event will happen in these different ways respectively, the pro-

bability that it will happen in some one of these ways is

Pi+Pl+Pa* +Pn-

Example 1. Find the chance of throwing 9 at least in a single throw
with two dice.

4
9 can be made up in 4 ways, and thus the chance of throwing 9 is , .

3
10 can be made up in 3 ways, and thus the chance of throwing 10 is ^

.

2
11 can be made up in 2 ways, and thus the chance of throwing 11 is--

.

12 can be made up in 1 way, and thus the chance of throwing 12 is -^

.

Now the chance of throwing a number not less than 9 is the sum of these

separate chances

;

.*. the required chance= <V/ .
=

n
.

ou lb
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Example 2. One purse contains 1 sovereign and 3 shillings, a second

purse contains 2 sovereigns and 4 shillings, and a third contains 3 sovereigns

and 1 shilling. If a coin is taken out of one of the purses selected at

random, find the chance that it is a sovereign.

Since each purse is equally likely to be taken, the chance of selecting

the first is -
; and the chance of then drawing a sovereign is - ; hence the

chance of drawing a sovereign so far as it depends upon the first purse is

- x j , or =^ . Similarly the chance of drawing a sovereign so far as it
3 4 12

12 1
depends on the second purse is - x - , or - ; and from the third purse the

3 6 913 1
chance of drawing a sovereign is - x -

, or -

;

.-. the required chance=— + - + -. = -
.

x*5 y tc o

460. In the preceding article we have seen that the pro-

bability of an event may sometimes be considered as the sum of

the probabilities of two or more separate events ; but it is very

important to notice that the probability of one or other of

a series of events is the sum of the probabilities of the separate

events only when the events are mutually exclusive, that is, when
the occurrence of one is incompatible with the occurrence of any
of the others.

Example. From 20 tickets marked with the first 20 numerals, one is

drawn at random : find the chance that it is a multiple of 3 or of 7.

The chance that the number is a multiple of 3 is — , and the chance that

2
it is a multiple of 7 is — ; and these events are mutually exclusive, hence the

. , , 6 2 2
required chance is — + -^ , or - .

But if the question had been: find the chance that the number is a
multiple of 3 or of 5, it would have been incorrect to reason as follows

:

Because the chance that the number is a multiple of 3 is — , and the

4
chance that the number is a multiple of 5 is — , therefore the chance that

6 4 1
it is a multiple of 3 or 5 is ^ + ^ , or - . For the number on the ticket

might be a multiple both of 3 and of 5, so that the two events considered

are not mutually exclusive.

461. It should be observed that the distinction between
simple and compound events is in many cases a purely artificial
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one ; in fact it often amounts to nothing more than a distinction

between two different modes of viewing the same occurrence.

Example. A bag contains 5 white and 7 black balls; if two balls arc

drawn what is the chance that one is white and the other black?

(i) Regarding the occurrence as a simple event, the chance

= (5*7H.=C2
=
6
-
6

.

(ii) The occurrence may be regarded as the happening of one or other

of the two following compound events

:

(1) drawing a white and then a black ball, the chance of which is

12 * 11
°r

132
;

(2) drawing a black and then a white ball, the chance of which is

7 5 35

i2
X
ir 0r

132'

And since these events are mutually exclusive, the required chance

j$5 ^5_ _35-
132

+ 132~66'

It will be noticed that we have here assumed that the chance of drawing
two specified balls successively is the same as if they were drawn simul-

taneously. A little consideration will shew that this must be the case.

EXAMPLES. XXXII. b.

1. What is the chance of throwing an ace in the first only of two
successive throws with an ordinary die ?

2. Three cards are drawn at random from an ordinary pack : find

the chance that they will consist of a knave, a queen, and a king.

3. The odds against a certain event are 5 to 2, and the odds in

favour of another event independent of the former are 6 to 5 ; find the

chance that one at least of the events will happen.

4. The odds against A solving a certain problem are 4 to 3, and
the odds in favour of B solving the same problem are 7 to 5 : what is

the chance that the problem will be solved if they both try 1

5. What is the chance of drawing a sovereign from a purse one

compartment of which contains 3 shillings and 2 sovereigns, and the

other 2 sovereigns and 1 shilling ?

6. A bag contains 17 counters marked with the numbers 1 to 17.

A counter is drawn and replaced; a second drawing is then made:
what is the chance that the first number drawn is even and the second
odd?
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7. Four persons draw each a card from an ordinary pack: find

the chance (1) that a card is of each suit, (2) that no two cards are of

equal value.

8. Find the chance of throwing six with a single die at least once

in five trials.

9. The odds that a book will be favourably reviewed by three

independent critics are 5 to 2, 4 to 3, and 3 to 4 respectively ; what is

the probability that of the three reviews a majority will be favourable ?

10. A bag contains 5 white and 3 black balls, and 4 are successively

drawn out and not replaced ; what is the chance that they are alternately

of different colours %

11. In three throws with a pair of dice, find the chance of throwing

doublets at least once.

12. If 4 whole numbers taken at random are multiplied together

shew that the chance that the last digit in the product is 1, 3, 7, or 9

. 16
1S

625'

13. In a purse are 10 coins, all shillings except one which is a
sovereign ; in another are ten coins all shillings. Nine coins are taken

from the former purse and put into the latter, and then nine coins are

taken from the latter and put into the former : find the chance that

the sovereign is still in the first purse.

14. If two coins are tossed 5 times, what is the chance that there

will be 5 heads and 5 tails \

15. If 8 coins are tossed, what is the chance that one and only

one will turn up head?

16. A, B, C in order cut a pack of cards, replacing them after each

cut, on condition that the first who cuts a spade shall win a prize : find

their respective chances.

17. A and B draw from a purse containing 3 sovereigns and
4 shillings : find their respective chances of first drawing a sovereign,

the coins when drawn not being replaced.

18. A party of n ^persons sit at a round table, find the odds against

two specified individuals sitting next to each other.

19. A is one of 6 horses entered for a race, and is to be ridden by
one of two jockeys B and C. It is 2 to 1 that B rides A, in which
case all the horses are equally likely to win ; if C rides A, his chance
is trebled : what are the odds against his winning ?

20. If on an average 1 vessel in every 10 is wrecked, find the chance
that out of 5 vessels expected 4 at least will arrive safely.
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462. The probability of the happening of an event in one
trial being known, required the probability of its happening once,

twice, three times, ... exactly in n trials.

Let p be the probability of the happening of the event in

a single trial, and let q = 1 -p\ then the probability that the
event will happen exactly r times in n trials is the (r + l) th term
in the expansion of (q + p)*.

For if we select any particular set of r trials out of the total

number n, the chance that the event will happen in every one of

these r trials and fail in all the rest is p
rq"~ [Art. 456], and as

a set of r trials can be selected in
nC

r
ways, all of which are

equally applicable to the case in point, the required chance is

C
rp q .

If we expand (/; + q)" by the Binomial Theorem, we have

2f + "C
1
2)

n - 1

q +
nCjS'-

2

q
2 + ... +"C

n_ rp
rq"- r + ... + q

n

;

thus the terms of this series will represent respectively the

probabilities of the happening of the event exactly n times, n — 1

times, n — 2 times, ... inn trials.

463. If the event happens n times, or fails only once,

twice, ... (n — r) times, it happens r times or more ; therefore the

chance that it happens at least r times in n trials is

P
n + "Cy-*q + "CaP

n

-Y+ ... tv^r.
or the sum of the first n — r + 1 terms of the expansion of

Example 1. In four throws with a pair of dice, what is the chanco of

throwing doublets twice at least ?

c i

In a single throw the chance of doublets is -^ , or ^ ; and the chance of
do o

5
failing to throw doublets is ^ . Now the required event follows if doublets

are thrown four times, three times, or twice ; therefore the required chanco
/l 5\ 4

is the sum of the first three terms of the expansion of h+d .

1 19
Thus the chance = — (1 + 4.5 + 6.5-)= -^

.

H. H. A. 25
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Example 2. A bag contains a certain number of balls, some of which are

white; a ball is drawn and replaced, another is then drawn and replaced;

and so on : if p is the chance of drawing a white ball in a single trial, find

the number of white balls that is most likely to have been drawn in n trials.

The chance of drawing exactly r white balls is nCrp
r
q
n-r

, and we have to

find for what value of r this expression is greatest.

Now nCrpr
q
n-r> nCr-lp

r-l
q
n-(r~ l

\

so long as (n-r + l)p>rq,

or (n + l)p>(p + q)r.

But p + 5 = 1; hence the required value of r is the greatest integer in

p[n + l).

If n is such that pn is an integer, the most likely case is that of pn
successes and qn failures.

464. Suppose that there are n tickets in a lottery for a prize

of £x; then since each ticket is equally likely to win the prize, and
a person who possessed all the tickets must win, the money value of

x
each ticket is £ -

: in other words this would be a fair sum to
n

pay for each ticket; hence a person who possessed r tickets might
TX

reasonably expect £— as the price to be paid for his tickets by

any one who wished to buy them; that is, he would estimate

£- x as the worth of his chance. It is convenient then to in-
n

troduce the following definition :

If p represents a person's chance of success in any venture

and M the sum of money which he will receive in case of success,

the sum of money denoted by pM is called his expectation.

465. In the same way that expectation is used in reference

to a person, we may conveniently use the phrase probable value

applied to things.

Example 1. One purse contains 5 shillings and 1 sovereign : a second
purse contains 6 shillings. Two coins are taken from the first and placed in

the second ; then 2 are taken from the second and placed in the first

:

find the probable value of the contents of each purse.

The chance that the sovereign is in the first purse is equal to the sum of

the chances that it has moved twice and that it has not moved at all

;
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112 8
that is, the chance = -

. - + 5 .1=-t.
6 4 3 4 .

.*. the chance that the sovereign is in the second purse=-r.

Hence the probahle value of the first purse

3 1
= T of 25*. + . of 6*.=£1. O.s-. 3r/.

4 4

.*. the probable value of the second purse

=31*.-2Q£«.=10*. <></.

Or the problem may be solved as follows :

The probable value of the coins removed

= s of 25s. = 8^s.;

the probable value of the coins brought back

=^of (Gs.+S
:V>\)=3 rW,

.\ the probable value of the first purse

= (25-81 + 3^) shillings = £1. Ck 3d., as before.

Example 2. A and B throw with one die for a stake of £11 which is to

be won by the player who first throws 6. If A has the first throw, what are
their respective expectations?

1 5 5 1
In his first throw A' a chance is -

; in his second it is -^ x - x - , because
b o 6

each player must have failed once before A can have a second throw ; in his

/5\ 4 1
third throw his chance is ( -

J
x ^ because each player must have failed

twice; and so on.

Thus A's chance is the sum of the infinite series

5MKi©4+
}•

Similarly #'s chance is the sum of the infinite series

WM»,+
G)

4

*
J-

.-. A' a chance is to 7>"s as G is to 5; their respective chances are therefore

-- and =y, and their expectations are £6 and £5 respectively.

26—

8
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466. We shall now give two problems which lead to useful

and interesting results.

Example 1. Two players A and B want respectively m and n points of

winning a set of games ; their chances of winning a single game are p and q
respectively, where the sum of p and q is unity ; the stake is to belong to

the player who first makes up his set : determine the probabilities in favour

of each player.

Suppose that A wins in exactly m + r games; to do this he must win the

last game and m-1 out of the preceding m + r-1 games. The chance of

this is
™+^-1 m_1

p™- 1
q
r
2h or m^~1Cm-1pm q

r
.

Now the set will necessarily be decided in m + n - 1 games, and A may
win his m games in exactly m games, or m+ 1 games, ... , or m + n - 1 games;
therefore we shall obtain the chance that A wins the set by giving to r the

values 0, 1, 2, ... n - 1 in the expression m+r- 1Cm_1 p
m
q
r

. Thus A J

s chance is

similarly B's chance is

n(nA-l\ \m + n-2 )

1.2 * jm-1 ii

This question is known as the " Problem of Points," and has

engaged the attention of many of the most eminent mathematicians

since the time of Pascal. It was originally proposed to Pascal by
the Chevalier de Mere in 1654, and was discussed by Pascal and
Fermat, but they confined themselves to the case in which the

players were supposed to be of equal skill : their results were also

exhibited in a different form. The formulae we have given are

assigned to Montmort, as they appear for the first time in a work
of his published in 1714. The same result was afterwards ob-

tained in different ways by Lagrange and Laplace, and by the

latter the problem was treated very fully under various modi-

fications.

Example 2. There are n dice with / faces marked from 1 to /; if these

are thrown at random, what is the chance that the sum of the numbers
exhibited shall be equal to p?

Since any one of the / faces may be exposed on any one of the n dice,

the number of ways in which the dice may fall is /n .

Also the number of ways in which the numbers thrown will have p for

their sum is equal to the coefficient of xp in the expansion of

{xl + x* + x3 + ... + xf
)

n
\

for this coefficient arises out of the different ways in which n of the indices

1, 2, 3, .../can be taken so as to form p by addition.
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Now the above expression = x 11 (l + x + x2 + ... + x f ')"

-(£?)"
We have therefore to find the coefficient of xp~n in the expansion of

(I - x') n (I - x)~n .

. t n(n-l) .,. n(n-l)(n-2) .,,

v « , »(n+l) „ ?t(»+l)(w + 2) _
and <1 - .r) -"= 1 + nx + * ' a;

2 +
.

1 ^ 3
— x3 +...

Multiply these series together and pick out the coefficient of xp~n in the

product ; we thus obtain

n(n+l)...{p-l) n(n+l)...(p-f-l)
it

\P -n
\

p - n -f
n (n - 1) M(;t + l)...(j>-2/-l)

+
1.2 •"

\

p-n-2f
where the series is to continue so long as no negative factors appear. The
required probability is obtained by dividing this series by/n

.

This problem is due to De Moivre and was published by him
in 1730 j it illustrates a method of frequent utility.

Laplace afterwards obtained the same formula, but in a much
more laborious manner ; he applied it in an attempt to demon-
strate the existence of a primitive cause which has made the

planets to move in orbits close to the ecliptic, and in the same
direction as the earth round the sun. On this point the reader

may consult Todhunter's History of Probability, Art. 987.

EXAMPLES. XXXII. c.

1. In a certain game A'a skill is to 2>'s as 3 to 2 : find the chance
of .1 winning 3 games at least out of 5.

2. A coin whose faces are marked 2, 3 is thrown 5 times : what
is the chance of obtaining a total of 12 ?

3. In each of a set of games it is 2 to 1 in favour of the winner
of the previous game : what is the chance that the player who wins
the first game shall win three at least of the next four ?

4. There are 9 coins in a bag, 5 of which are sovereigns and
the rest are unknown coins of equal value ; find what they must be if

the probable value of a draw is 12 shillings.
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5. A coin is tossed n times, what is the chance that the head will

present itself an odd number of times ?

6. From a bag containing 2 sovereigns and 3 shillings a person
is allowed to draw 2 coins indiscriminately; find the value of his ex-

pectation.

7. Six persons throw for a stake, which is to be won by the one
who first throws head with a penny ; if they throw in succession, find

the chance of the fourth person.

8. Counters marked 1, 2, 3 are placed in a bag, and one is with-
drawn and replaced. The operation being repeated three times, what
is the chance of obtaining a total of 6 ?

9. A coin whose faces are marked 3 and 5 is tossed 4 times : what
are the odds against the sum of the numbers thrown being less than 15?

10. Find the chance of throwing 10 exactly in one throw with
3 dice.

11. Two players of equal skill, A and B, are playing a set of
games ; they leave off playing when A wants 3 points and B wants 2.

If the stake is £16, what share ought each to take \

12. A and B throw with 3 dice : if A throws 8, what is Z?'s chance
of throwing a higher number ?

13. A had in his pocket a sovereign and four shillings ; taking out
two coins at random he promises to give them to B and C. What is

the worth of (7's expectation ?

14. In five throws with a single die what is the chance of throwing

(1) three aces exactly, (2) three aces at least.

15. A makes a bet with B of 5s. to 2s. that in a single throw with
two dice he .will throw seven before B throws four. Each has a pair

of dice and they throw simultaneously until one of them wins : find B's

expectation.

16. A person throws two dice, one the common cube, and the other

a regular tetrahedron, the number on the lowest face being taken in the

case of the tetrahedron; what is the chance that the sum of the
numbers thrown is not less than 5 ?

17. A bag contains a coin of value J/, and a number of other coins
whose aggregate value is m. A person draws one at a time till he
draws the coin 31 : find the value of his expectation.

18. If 6n tickets numbered 0, 1, 2, 6n- 1 are placed in a bag,
and three are drawn out, shew that the chance that the sum of the
numbers on them is equal to 6?i is

3?&

(6n-l)(6n-2)'
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*Inverse Probability.

*467. In all the cases we have hitherto considered it lias been
supposed that our knowledge of the causes which may produce a
certain event is sucli as to enable us to determine the chance of
the happening of the event. We have now to consider problems
of a different character. For example, if it is known that an
event has happened in consequence of some one of a certain
number of causes, it may be required to estimate the probability
of each cause being the true one, and thence to deduce the pro-
bability of future events occurring under the operation of the
same causes.

*468. Before discussing the general case we shall give a
numerical illustration.

Suppose there are two purses, one containing 5 sovereigns
and 3 shillings, the other containing 3 sovereigns and 1 shilling,

and suppose that a sovereign lias been drawn : it is required to

find the chance that it came from the first or second purse.

Consider a very large number iV of trials ; then, since before
the event eacli of the purses is equally likely to be taken, we may

assume that the first purse would be chosen in ^ iV of the trials,

5
and in - of these a sovereign would be drawn ; thus a sovereign

8 °

5 1 5
would be drawn - x ~iV, or —N times from the first purse.

o 1 lb

The second purse would be chosen in -N of the trials, and in

3
j of these a sovereign would be drawn ; thus a sovereign would

3
be drawn -JV times from the second purse.

Now JV is very large but is otherwise an arbitrary number

;

let us put iV-16n; thus a sovereign would be drawn 5n times
from the first purse, and Qn times from the second purse; that is,

out of the lln times in which a sovereign is drawn it comes
from the first purse bn times, and from the second purse 0?i
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times. Hence the probability that the sovereign came from the

5
first purse is — , and the probability that it came from the

A' 6
second is rr.

*469. It is important that the student's attention should be

directed to the nature of the assumption that has been made in

the preceding article. Thus, to take a particular instance,

although in 60 throws with a perfectly symmetrical die it may
not happen that ace is thrown exactly 10 times, yet it will

doubtless be at once admitted that if the number of throws is

continually increased the ratio of the number of aces to the

number of throws will tend more and more nearly to the limit

— . There is no reason why one face should appear oftener than
6

another ; hence in the long run the number of times that each of

the six faces will have appeared will be approximately equal.

The above instance is a particular case of a general theorem

which is due to James Bernoulli, and was first given in the Ars

Conjectandi, published in 1713, eight years after the author's

death. Bernoulli's theorem may be enunciated as follows

:

If p is the probability that an event happens in a single trial,

then if the number of trials is indefinitely increased, it becomes a

certainty that the limit of the ratio of the number of successes to the

number of trials is equal to p ; in other words, if the number of
trials is N, the number of successes may be taken to be pN.

See Todhunter's History of Probability, Chapter vn. A proof

of Bernoulli's theorem is given in the article Probability in the

Encyclopaedia Britannica.

*470. An observed event has Jiappened through, some one of a
number of mutually exclusive causes : required to find the . pro-

bability of any assigned cause being the true one.

Let there be n causes, and before the event took place ' suppose

that the probability of the existence of these causes was estimated

at P
x , P2 , P3 , ... P

n
. Let p r

denote the probability that when the

r*
1* cause exists the event will follow : after the event has occurred

it is required to find the probability that the rth cause was the

true one.
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Consider a \cry great number JV of trials ; then the first cause

exists in P
X
N of these, and out of this number the event follows

in p x
P

x
N j similarly there are p^^N trials in which the event

follows from the second cause; and so on for each of the other

causes. Hence the number of trials in which the event follows is

;md the number in which the event was due to the rth cause is

'P,.I\N ',
lience after the event the probability that the rth cause

was the true one is

pJPjr+NUpP);

tliat is, the probability that the event was produced by the r"'

PrKcause is Mvn
*471. It is necessary to distinguish clearly between the pro-

bability of the existence of the several causes estimated before

the event, and the probability after the event has happened of any
assigned cause being the true one. The former are usually called

a priori probabilities and are represented by P
x

, P , P . ... Pn \

the latter are called a posteriori probabilities, and if we denote

them by Qt1 Q„, Q3
, ... QHf we have proved that

Qr 2 ( PP)
'

where pr denotes the probability of the event on the hypothesis

of the existence of the rth cause.

From this result it appears that S (Q) = lj which is other-

wise evident as the event has happened from one and only one

of the causes.

We shall now give another proof of the theorem of the pre-

ceding article which does not depend on the principle enunciated

in Art. 469.

*472. An observed event has happened through some one of a
member of mutually exclusive causes : required to find the pro-

bability of any assigned cause being the true one.

Let there be n causes, and before the event took place suppose that

the probability of the existence of these causes was estimated at

P
t

, P
2 , Pz , ... P

n
. Let pr

denote the probability that when the
?-th cause exists the event will follow ; then the antecedent proba-

bility that the event would follow from the rth cause is p r
P

r
.
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Let Qr
be the a posteriori probability that the rth cause was the

true one; then the probability that the rth cause was the true one

is proportional to the probability that, if in existence, this cause

would produce the event

;

. A._JL = _ <?» . s(<?) _ i
.

" pA pA '"
p.p, Hpp)

s(PP)'

Prpr
<?,=

2 (pP)

Hence it appears that in the present class of problems the

product Prpr , will have to be correctly estimated as a first step;

in many cases, however, it will be found that Plt P2 ,
P

3 , ... are

all equal, and the work is thereby much simplified.

Example. There are 3 bags each containing 5 white balls and 2 black

balls, and 2 bags each containing 1 white ball and 4 black balls : a black ball

having been drawn, find the chance that it came from the first group.

Of the five bags, 3 belong to the first group and 2 to the second ; hence

If a bag is selected from the first group the chance of drawing a black

2 4 2 4
ball is - ; if from the second group the chance is -

; thus p x
= -

, p.2= ;

7 o / o

p 6 ^" lh 1_
3o'

lh 2 ~~25'

Hence the chance that the black ball came from one of the first group is

JL^/A 8\15
35 ' \35"h 25/ 43*

*473. When an event has been observed, we are able by

the method of Art. 472 to estimate the probability of any

particular cause being the true one ; we may then estimate

the probability of the event happening in a second trial, or

we may find the probability of the occurrence of some other

event.

For example, pr is the chance that the event will happen
from the rth cause if in existence, and the chance that the rth

cause is the true one is Qr ; hence on a second trial the chance

that the event will happen from the rth cause is prQr . Therefore

the chance that the event will happen from some one of the

causes on a second trial is 2 (2}Q)'
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Example. A purse contains 4 coins which arc either sovereigns or
shillings; 2 coins are drawn and found to be shillings: if these are replaced
what is the chance that another drawing will give a sovereign?

This question may be interpreted in two ways, which we shall discuss
separately.

I. If we consider that all numbers of shillings are a priori equally likely,

we shall have three hypotheses; for (i) all the coins may be shillings, (ii)

three of them may be shillings, (iii) only two of them may be shillings.

Here P^P.^P.^;

also ^ = 1, J>a=g, P»=q-

Hence probability of iirst hypothesis= 1-5- (1 + o + r) — tTv^ Qi>

probability of second hypothesis = o ^ ( * + 2 +
f )
=

To
~ ^'J '

probability of third hypothesis— - -f- ( 1 + ~ + .-
) =T7\=Qy

Therefore the probability that another drawing will give a sovereign

1 3_ 2 1_ 5^ 1
~4 *10 +

4 'To~40
-

8*

II. If each coin is equally likely to be a shilling or a sovereign, by taking
/l IV

the terms in the expansion of I - + -
J

, we see that the chance of four

1 . 4 6
shillings is r-^ , of three shillings is 77: , of two shillings is —-. ; thus

lb 10 10

P_l P -± P _A.il_ 16' 2 ~1G' ^»-16'

also, as before, iJ i = l> Pi—a* Ps—r'

Qi_Q-2_Q*_ Qi + Q2+Q* _ 1
6 ' 12 ' 6 24 24'Hence

Therefore the probability that another drawing will give a sovereign

= (<2ix0)+(q,x^ + ((? :j
x|)

~ 8
+

16 4
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*474. We shall now shew how the theory of probability may
be applied to estimate the truth of statements attested by wit-

nesses whose credibility is assumed to be known. We shall

suppose that each witness states what he believes to be the truth,

whether his statement is the result of observation, or deduction,

or experiment; so that any mistake or falsehood must be

attributed to errors of judgment and not to wilful deceit.

The class of problems we shall discuss furnishes a useful

intellectual exercise, and although the results cannot be regarded

as of any practical importance, it will be found that they confirm

the verdict of common sense.

*475. When it is asserted that the probability that a person

speaks the truth is p, it is meant that a large number of state-

ments made by him has been examined, and that p is the ratio

of those which are true to the whole number.

*476. Two independent witnesses, A and B, whose proba-

bilities of speaking the truth are p and p' respectively, agree in

making a certain statement : what is the probability that the

statement is true %

Here the observed event is the fact that A and B make the

same statement. Before the event there are four hypotheses ; for

A and B may both speak truly ; or A may speak truly, B falsely;

or A may speak falsely, B truly ; or A and B may both speak

falsely. The probabilities of these four hypotheses are

PP\ p( l ~P\ P'Q-P)* (
1 -P)( 1 ~P') respectively.

Hence after the observed event, in which A and B make the

same statement, the probability that the statement is true is to

the probability that it is false as pp to (1 - p) (1 -p') ; that

is, the probability that the joint statement is true is

pp'

statement is true is

./„//

ppp
ppY + {1-p){i-p')(i-p") }

and so on for any number of persons.

pp' + (l-p)(l-p')'

Similarly if a third person, whose probability of speaking the

truth is p", makes the same statement, the probability that the
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*477. In the preceding article it lias been supposed that we
have no knowledge of the event except the statement made by A
and B ; if we have information from other sources as to the
probability of the truth or falsity of the statement, this must be
taken into account in estimating the probability of the various

hypotheses.

For instance, if A and B agree in stating a fact, of which
the a priori probability is P, then we should estimate the pro-

bability of the truth and falsity of the statement by

Ppp* and (1 - P) (1 — p>) (1 — p') respectively.

Example. There is a raffle with 12 tickets and two prizes of £9 and £3.

A, B, C, whose probabilities of speaking the truth are ^, §, f respectively,

report the result to D, who holds one ticket. A and B assert that he has
won the £9 prize, and C asserts that he has won the £3 prize; what is D's
expectation?

Three cases are possible; D may have won £9, £3, or nothing, for A, B,
C may all have spoken falsely.

Now with the notation of Art. 472, we have the a priori probabilities

P-i P-A P-™.*i- 12 « *a-l2' ^3 ~12'

12 24 1133 1 1 2_ 2
also Pi~2 X

3
X 5-30> **~~2 X

3
X

5 ~ 30 ' A_ 2 * 3
X 5~3() ;

" 4 3 20 27'

4 3
hence D's expectation =— of £9 +— of £3 =£1. 13s. id.

*478. With respect to the results proved in Art. 47G, it

should be noticed that it was assumed that the statement can be

made in two ways only, so that if all the witnesses tell falsehoods

they agree in telling the same falsehood.

If this is not the case, let us suppose that c is the chance

that the two witnesses A and B will agree in telling the same
falsehood ; then the probability that the statement is true is to

the probability that it is false as pp' to c (1 —p) (1 — p').

As a general rule, it is extremely improbable that two
independent witnesses will tell the same falsehood, so that c is

usually very small; also it is obvious that the quantity c becomes
smaller as the number of witnesses becomes greater. These con-

siderations increase the probability that a statement asserted by
two or more independent witnesses is true, even though the

credibility of each witness is small.
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Example. A speaks truth 3 times out of 4, and B 7 times out of 10; they

both assert that a white ball has been drawn from a bag containing 6 balls

all of different colours : find the probability of the truth of the assertion.

There are two hypotheses
;

(i) their coincident testimony is true, (ii) it is

false.

•1 P- 5-
6' 2 ~6'Here Px = ~ , P2

^1- 4
X
10' •P2 ~25 X

4
X
10

;

for in estimating p.2 we must take into account the chance that A and B will

both select the white ball when it has not been drawn ; this chance is

11 1

5
X

5
°r

25
*

Now the probabilities of the two hypotheses are as P^ to P2po, and
35

therefore as 35 to 1; thus the probability that the statement is true is —

.

*479. The cases we have considered relate to the probability

of the truth of concurrent testimony; the following is a case of

traditionary testimony.

If A states that a certain event took place, having received an

account of its occurrence or non-occurrence from B, what is the

probability that the event did take place 1

The event happened (1) if they both spoke the truth, (2) if

they both spoke falsely ; and the event did not happen if only

one of them spoke the truth.

Let p, p denote the probabilities that A and B speak the

truth ; then the probability that the event did take place is

pp' + (l-p)(l-p)
}

and the probability that it did not take place is

p(l-2))+p'(l-p).

*480. The solution of the preceding article is that which has

usually been given in text-books; but it is" open to serious objec-

tions, for the assertion that the given event happened if both A
and B spoke falsely is not correct except on the supposition that

the statement can be made only in two ways. Moreover,

although it is expressly stated that A receives his account from

B, this cannot generally be taken for granted as it rests on

A'& testimony.
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A full discussion of the different ways of interpreting the
question, and of the different solutions to which they lead, will be
found in the Educational Times Reprint, Yols. XXVII. and XXXII.

^EXAMPLES. XXXII. d.

1. There are four balls in a bag, but it is not known of what
colours they are ; one ball is drawn and found to be white : find the

chance that all the balls are white.

2. In a bag there are six balls of unknown colours; three balls

are drawn and found to be black; find the chance that no black ball

is left in the bag.

3. A letter is known to have come either from London or Clifton

;

on the postmark only the two consecutive letters ON are legible ; what
is the chance that it came from London ?

4. Before a race the chances of three runners, A, B, C, were
estimated to be proportional to 5, 3, 2 ; but during the race A meets
with an accident which reduces his chance to one-third. What are now
the respective chances of B and C ?

5. A purse contains n coins of unknown value ; a coin drawn at

random is found to be a sovereign; what is the chance that it is the
only sovereign in the bag ?

6. A man has 10 shillings and one of them is fcnown to have two
heads. He takes one at random and tosses it 5 times and it always
falls head : what is the chance that it is the shilling with two heads ?

7. A bag contains 5 balls of unknown colour; a ball is drawn
and replaced twice, and in each case is found to be red : if two balls

are now drawn simultaneously find the chance that both are red.

8. A purse contains five coins, each of which may be a shilling

or a sixpence ; two are drawn and found to be shillings : find the prob-

able value of the remaining coins.

9. A die is thrown three times, and the sum of the three numbers
thrown is 15 : find the chance that the first throw was a four.

10. A speaks the truth 3 out of 4 times, and B 5 out of 6 times

:

what is the probability that they will contradict each other in .stating

the same fact ?
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11. A speaks the truth 2 out of 3 times, and B 4 times out of 5

;

they agree in the assertion that from a bag containing 6 balls of different

colours a red ball has been drawn : find the probability that the state-

ment is true.

12. One of a pack of 52 cards has been lost ; from the remainder
of the pack two cards are drawn and are found to be spades ; find the

chance that the missing card is a spade.

13. There is a raffle with 10 tickets and two prizes of value £5
and £1 respectively. A holds one ticket and is informed by B that
he has won the £b prize, while C asserts that he has won the ,£1 prize

:

what is A's expectation, if the credibility of B is denoted by §, and
that of C by f ?

14. A purse contains four coins ; two coins having been drawn are

found to be sovereigns : find the chance (1) that all the coins are

sovereigns, (2) that if the coins are replaced another drawing will give

a sovereign.

15. P makes a bet with Q of ,£8 to £120 that three races will be
won by the three horses A, B, C, against which the betting is 3 to 2,

4 to 1, and 2 to 1 respectively. The first race having been won by A,
and it being known that the second race was won either by B, or by
a horse D against which the betting was 2 to 1, find the value of P's
expectation.

16. From a bag containing n balls, all either white or black, all

numbers of each being equally likely, a ball is drawn which turns out
to be white; this is replaced, and another ball is drawn, which also

turns out to be white. If this ball is replaced, prove that the chance

of the next draw giving a black ball is - (n — 1) (2n + l)~ l
.

17. If mn coins have been distributed into m purses, n into each,

find (1) the chance that two specified coins will be found in the same
purse; and (2) what the chance becomes when r purses have been
examined and found not to contain either of the specified coins.

18. A, B are two inaccurate arithmeticians whose chance of solving

a given question correctly are -£ and y
1^ respectively ; if they obtain the

same result, and if it is 1000 to 1 against their making the same
mistake, find the chance that the result is correct.

19. Ten witnesses, each of whom makes but one false statement in

six, agree in asserting that a certain event took place ; shew that the

odds are five to one in favour of the truth of their statement, even

although the a 'priori probability of the event is as small as ^9—r •
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1

Local Probability. Geometrical Methods.

*481. The application of Geometry to questions of Pro-

bability requires, in general, the aid of the Integral Calculus;

there are, however, many easy questions which can be solved by
Elementary Geometry.

Example 1. From each of two equal lines of length I a portion is cut

off at random, and removed : what is the chance that the sum of the
remainders is less than I?

Place the lines parallel to one another, and suppose that after cutting,

the right-hand portions are removed. Then the question is equivalent to

asking what is the chance that the sum of the right-hand portions is greater
than the sum of the left-hand portions. It is clear that the first sum is

equally likely to be greater or less than the second; thus the required

probability is -

.

a

Cor. Each of two lines is known to be of length not exceeding I: the

chance that their sum is not greater than Z is -

.

a

Example 2. If three lines are chosen at random, prove that they are
just as likely as not to denote the sides of a possible triangle.

Of three lines one must be equal to or greater than each of the other
two ; denote its length by I. Then all we know of the other two lines is that
the length of each lies between and /. But if each of two lines is known to

be of random length between and 1, it is an even chance that their sum
is greater than /. [Ex. 1, Cor.]

Thus the required result follows.

Example 3. Three tangents are drawn at random to a given circle

:

shew that the odds are 3 to 1 against the circle being inscribed in the triangle

formed by them.

P

O

Draw three random lines P, (), 11, in the same plane as the circle, and
draw to the circle the six tangents parallel to these lines.

H. H.A. 2G
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Then of the 8 triangles so formed it is evident that the circle will be

escribed to 6 and inscribed in 2 ; and as this is true whatever be the original

directions of P, Q, R, the required result follows.

*4:82. Questions in Probability may sometimes be con-

veniently solved by the aid of co-ordinate Geometry.

Example. On a rod of length a + b+c, lengths a, b are measured at

random: find the probability that no point of the measured lines will

coincide.

Let AB be the line, and suppose AP= x and PQ = a; also let a be

measured from P towards B, so that x must be less than b + c. Again let

AP'= y, P'Q'= b, and suppose P'Q' measured from P' towards B, then y must
be less than a + c.

Now in favourable cases we must have AP'>AQ, or else AP>AQ\
hence y>a + x, or x>b + y (1).

Again for all the cases possible, we must have

x>0, and <& + c)

2/>0, and <a + c)

Take a pair of rectangular axes and make OX equal to b + c, and OY
equal to a + c.

Draw the line y = a + x, represented by TML in the figure; and the line

x = b + y represented by KB.

Q n

•A P' W B f -0.—Q b - K
Then YM, EX are each equal to c, 031, OT are each equal to a.

X

The conditions (1) are only satisfied by points in the triangles MYL and
ItXR, while the conditions (2) are satisfied by any points within the rect-
angle OX, OY;

c2
.*. the required chance = —

.

{a + c)(b + c)

*483. We shall close this chapter with some Miscellaneous
Examples.

Example 1. A box is divided into m equal compartments into which n
balls are thrown at random

; find the probability that there will be p com-
partments each containing a balls, q compartments each containing b balls,
r compartments each containing c balls, and so on, where

Z>a+qb + rc + =n.
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Since each of the n halls can fall into any one of the m compartments
the total number of cases which can occur is mn

, and these are all equally
likely. To determine the number of favourable cases we must find the
number of ways in which the n balls can be divided into p, <1, r, ... parcels
containing a, b, c, ... balls respectively.

First choose any g of the compartments, where s stands for p+ q+ r+ ... ;

\m
the number of ways in which this can be done is -.——— (1).

\s \m-s -v
'

Next subdivide the s compartments into groups containing pt q, r, ...

severally; by Art. 147, the number of ways in which this can be done is

\»\1 r ..

(2).

Lastly, distribute the n balls into the compartments, putting a into each
of the group of p, then b into each of the group of q, c into each of the
group of r, and so on. The number of ways in which this can be done is

In - (3).
(\a)*(\b)«(\c_)

Hence the number of ways in which the balls can be arranged to satisfy
the required conditions is given by the product of the expressions (1), (2), (3).
Therefore the required probability is

\m t
m" (\a)>> (\b)i ([£)-• |p|j|r.

\

m-p-q-r-

Example 2. A bag contains n balls ; k drawings are made in succession,
and the ball on each occasion is found to be white : find the chance that the
next drawing will give a white ball'; (i) when the balls are replaced after

each drawing
;

(ii) when they are not replaced.

(i) Before the observed event there are n + 1 hypotheses, equally likely;
for the bag may contain 0, 1, 2, 3, ... n white balls. Hence following the
notation of Art. 471,

1 = -Pj — P-2=P3= . . . = Pn ;

Hence after the observed event,

Qr=
7-*

thus the required chance =

l»+2*+ 3*+...+n*

xt drawing will giv<Now the chance that the next drawing will give a white ball=2 - Qr \

n p + 2* + 3* + ...+n*

and the value of numerator and denominator may be found by Art. 405.

26—2
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In the particular case when k = 2,

the required chance =- <—*-=— S -4- ^

3 (n + 1)

~2(2n+l)'

If n is indefinitely large, the chance is equal to the limit, when n is in-

1 V^2 «*+!

finite, of

and thus the chance is

n ' k + 2 '

fc+ 1.'

fe+ 1

&+2*

(ii) If the halls are not replaced,

and Qr=i
it

r r - 1 r - 2 r - A; +

1

r

—

n " n— 1 ' n - 2 "
' »— k+ 1

'

p, (r-k + l)(r-k + 2) (r-l)r
r=K

r y
r=0

(>--£+l)(r-ifc + 2) (r-l)r

(u-ifc + l)(n-Jfe+ 2) (n-l)n (n+1)

The chance that the next drawing will give a white ball= 2 . Q r
r=0 U — Ii

s"(r-fc)(r-fc+l) (r-l)r
(;i - A) (u - /c + 1) ?i (n + 1) r=0

fc + 1 (/i-A-)(n-/v + l) n(»i + l)
_
(n-k)(n-k + l) n(n + l)

*

k~+
2~

Jfc+1
~k + 2'

which is independent of the number of balls in the bag at first.

Example 3. A person writes n letters and addresses n envelopes ; if the
letters are placed in the envelopes at random, what is the probability that
every letter goes wrong ?

Let un denote the number of ways in which all the letters go wrong, and
let abed . . . represent that arrangement in which all the letters are in their
own envelopes. Now if a in any other arrangement occupies the place of an
assigned letter b, this letter must either occupy a's place or some other.

(i) Suppose b occupies a's place. Then the number of ways in which
all the remaining n - 2 letters can be displaced is un_2 , and therefore the
numbers of ways in which a may be displaced by interchange with some one
of the other n- 1 letters, and the rest be all displaced is (n - 1) «„_2

.
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(ii) Suppose a occupies i>'s place, and b does not occupy a's. Then in

arrangements satisfying the required conditions, since a is fixed in &'s place,

the letters b, c, d, ... must be all displaced, which can be done in h__j ways;
therefore the number of ways in which a occupies the place of another letter

but not by interchange with that letter is (n - 1) un- l ;

.-. vn = (n-l) (M n_! + «„_„);

from which, by the method of Art. 4-44, we find u n - nun _ 1
= ( - l)n (ttj - Uj).

Also n
1
= 0, tig = 1 ; thus we finally obtain

, f 1 i i (- 1 )'
1

!

Now the total number of ways in which the n things can be put in n
places is In ; therefore the required chance is

11 1
_

(- 1)"

[2 |£
+

|4
'•• +

in '

Tlie problem liere involved is of considerable interest, and in

some of its many modifications lias maintained a permanent place

in works on the Theory of Probability. It was first discussed

by Montmort, and it was generalised by De Moivre, Euler, and
Laplace.

*484. The subject of Probability is so extensive that it is

impossible here to give more than a sketch of the principal

algebraical methods. An admirable collection of problems, illus-

trating every algebraical process, will be found in "NVliitworth's

Choice and Chance; and the reader who is acquainted with the

Integral Calculus may consult Professor Crofton's article Proba-
bility in the Encyclopcedia JJritannica. A complete account of

the origin and development of the subject is given in Todhunter's

History of the Theory of Probability from the time of Pascal to

that of Laplace.

The practical applications of the theory of Probability to

commercial transactions are beyond the scope of an elementary
treatise ; for these we may refer to the articles Annuities and
Insurance in the JEncyclopcedia Britannica.

^EXAMPLES. XXXII. e.

L What are the odds in favour of throwing at lea.st 7 in a single

throw with two dice ?

2. In a purse there are 5 sovereigns and 4 shillings. If they are

drawn out one by one, what is the chance that they come out sovereigns

und shillings alternately, beginning with ;t sovereign?
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3. If on an average 9 ships out of 10 return safe to port, what
is the chance that out of 5 ships expected at least 3 will arrive 1

4. In a lottery all the tickets are blanks but one; each person

draws a ticket, and retains it : shew that each person has an equal

chance of drawing the prize.

5. One bag contains 5 white and 3 red balls, and a second bag
contains 4 white and 5 red balls. From one of them, chosen at random,
two balls are drawn : find the chance that they are of different colours.

6. Five persons A, B, C, B, E throw a die in the order named
until one of them throws an ace : find their relative chances of winning,

supposing the throws to continue till an ace appears.

7. Three squares of a chess board being chosen at random, what
is the chance that two are of one colour and one of another 1

8. A person throws two dice, one the common cube, and the other

a regular tetrahedron, the number on the lowest face being taken in

the case of the tetrahedron ; find the average value of the throw, and
compare the chances of throwing 5, 6, 7.

9. A's skill is to 2?'s as 1 : 3 ; to Cs as 3 : 2 ; and to Z)'s as 4 : 3

:

find the chance that A in three trials, one with each person, will succeed
twice at least.

10. A certain stake is to be won by the first person who throws
an ace with an octahedral die : if there are 4 persons what is the
chance of the last ?

11. Two players A, B of equal skill are playing a set of games ; A
wants 2 games to complete the set, and B wants 3 games: compare
their chances of winning.

12. A purse contains 3 sovereigns and two shillings : a person
draws one coin in each hand and looks at one of them, which proves
to be a sovereign ; shew that the other is equally likely to be a sovereign

or a shilling.

13. A and B play for a prize ; A is to throw a die first, and is to

win if he throws 6. If he fails B is to throw, and to win if he throws
6 or 5. If he fails, A is to throw again and to win with 6 or 5 or 4,

and so on : find the chance of each player.

14. Seven persons draw lots for the occupancy of the six seats in

a first class railway compartment : find the chance (1) that two specified

persons obtain opposite seats, (2) that they obtain adjacent seats on
the same side.

15. A number consists of 7 digits whose sum is 59 ;
prove that the

.4
chance of its being divisible by 11 is — .

16. Find the chance of throwing 12 in a single throw with 3 dice.
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17. A bag contains 7 tickets marked with the numbers 0, 1, 2, ...G

respectively. A ticket is drawn and replaced ; find the chance that

after 4 drawings the sum of the numbers drawn is 8.

18. There are 10 tickets, 5 of wThich are blanks, and the others are

marked with the numbers 1, 2, 3, 4, 5 : what is the probability of

drawing 10 in three trials, (1) when the tickets are replaced at every
trial, (2) if the tickets are not replaced ?

19. If n integers taken at random are multiplied together, shew

that the chance that the last digit of the product is 1, 3, V, or 9 is —
;

o
An _ 9>i Kn .pi

the chance of its being 2, 4, 6, or 8 is —=—— ; of its being 5 is

and of its beinc: is
10H -8'l -5n+ 4n

10*

20. A purse contains two sovereigns, two shillings and a metal
dummy of the same form and size ; a person is allowed to draw out one
at a time till he draws the dummy : find the value of his expectation.

21. A certain sum of money is to be given to the one of three

persons A, B, C who first throws 10 with three dice; supposing them
to throw in the order named until the event happens, prove that their

chances are respectively

/8\ 2 56 . /7\ 2

(ja)' W> and
[&)'

22. Two persons, whose probabilities of speaking the truth are

2 5
- and - respectively, assert that a specified ticket has been drawn out

of a bag containing 15 tickets: what is the probability of the truth of

the assertion ?

23. A bag contains —
- counters, of which one is marked 1,

two are marked 4, three are marked 9, and so on ; a person puts in his

hand and draws out a counter at random, and is to receive as many
shillings as the number marked upon it : find the value of his ex-

pectation.

24. If 10 things are distributed among 3 persons, the chance of

a particular person having more than 5 of them is _ .... .

25. If a rod is marked at random in n points and divided at

those points, the chance that none of the parts shall be greater than

—th of the rod is — .

n a n
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26. There are two purses, one containing three sovereigns and a

shilling, and the other containing three shillings and a sovereign. A coin

is taken from one (it is not known which) and dropped into the other

;

and then on drawing a coin from each purse, they are found to be two

shillings. What are the odds against this happening again if two more

are drawn, one from each purse 1

27. If a triangle is formed by joining three points taken at random
in the circumference of a circle, prove that the odds are 3 to 1 against

its being acute-angled.

28. Three points are taken at random on the circumference of a

circle: what is the chance that the sum of any two of the arcs so

determined is greater than the third ?

29. A line is divided at random into three parts, what is the chance

that they form the sides of a possible triangle ?

30. Of two purses one originally contained 25 sovereigns, and the

other 10 sovereigns and 15 shillings. One purse is taken by chance

and 4 coins drawn out, which prove to be all sovereigns : what is the

chance that this purse contains only sovereigns, and what is the prob-

able value of the next draw from it?

31. On a straight line of length a two points are taken at random

;

find the chance that the distance between them is greater than b.

32. A straight line of length a is divided into three parts by two
points taken at random ; find the chance that no part is greater than b.

33. If on a straight line of length a+ b two lengths a, b are

measured at random, the chance that the common part of these lengths

c2

shall not exceed c is —r , where c is less than a or b ; also the chance
ab

that the smaller length b lies entirely within the larger a is — .

.

(Jj

34. If on a straight line of length a + b + c two lengths a, b are

measured at random, the chance of their having a common part which

shall not exceed d is T — . . 7 . , where d is less than either a or b.
(c+ a)(c+6)'

35. Four passengers, A, B, C, D, entire strangers to each other, are
travelling in a railway train which contains I first-class, m second-class,

and n third-class compartments. A and B are gentlemen whose re-

spective a priori chances of travelling first, second, or third class are
represented in each instance by X, fi, v, C and D are ladies whose
similar a priori chances are each represented by I, m, n. Prove
that, for all values of X, fi, v (except in the particular case when
X : p : v=l. : m : oi), A and B are more likely to be found both in the
company of the same lady than each with a different one.



CHAPTER XXXIII.

Determinants.

485. The present chapter is devoted to a brief discussion of

determinants and their more elementary properties. The slight

introductory sketch here given will enable a student to avail

himself of the advantages of determinant notation in Analytical

Geometry, and in some other parts of Higher Mathematics

;

fuller information on this branch of Analysis may be obtained

from Dr Salmon's Lessons Introductory to the Modern Higher
Algebra, and Muir's Theory of Determinants.

48G. Consider the two homogeneous linear equations

a
]

x + b
l
y = 0,

a
2
x + b

2y = 0;

multiplying the first equation by bsi the second by 6 , sub-

tracting and dividing by x, we obtain

This result is sometimes written

a
x

b
x

a„ b„

-0,

and the expression on the left is called a determinant. It consists

of two rows and two columns, and in its expanded form each

term is the product of two quantities; it is therefore said to be

of the second order.

The letters « , b a
a , b

2
are called the constituents of the

determinant, and tile terms «,/>,,, ab. are called the elements,
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487. Since

a.

a.

aA - «A = a. a„

it follows that the value of the determinant is not altered by chang-
ing the rows into columns, and the columns into rows.

488. Again, it is easily seen that

«
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hence

a

*i

^3 C
3

(I. «., ft..

*, K \
<\ C

2
C
3

that is, the value of the determinant is not altered by changing the

rows into column*, and the columns into rov)S.

a.,

491.

6.

From the preceding article,

c
2

=«,
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492. The determinant a
x

b
l

c
x

<** h
2

C
2

% b
3

C
3

= «, (KC
3
~ KC

2) + h
l (
C2«3 - C/h) + C

, («A " «362 )

= " b
l(
a
2
C
B
~ ««C») ~ Cl

l (
C
2
b
3
- CJ>>) - C

l (Ka3
~ 6A) >

hence

«, K
a

2
b
2

c.

b
x

a
x

a

(i
3

C
3

Thus it appears that if two adjacent columns, or rows, of the

determinant are interchanged, the sign of the determinant is

changed, but its value remains unaltered.

If for the sake of brevity we denote the determinant

a
x

b
t

c
x

(l
2 h C

2

«3 K °3

by (a
x
b2c3), then the result we have just obtained may be written

(VsO = - (»Acs)-
Similarly we may shew that

(
ci«A) = - (

aAb
3) = + («AC

3)-

493. If two rows or two columns of tlie determinant are

identical the determinant vanishes.

For let D be the value of the determinant, then by inter-

changing two rows or two columns we obtain a determinant
whose value is — D; but the determinant is unaltered; hence
J) = — D, that is D = 0. Thus we have the following equations,

a A, — aA n + aJL m = D.
1 1 2 2 3 3

494. If each constituent in any row, or in any column, is

multiplied by the same factor, then the determinant is multiplied

by that factor.
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For tna
x

ma2

ma
a

by
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These results may easily be generalised; thus if the con-

stituents of the three columns consist of m, n, p terms respec-

tively, the determinant can be expressed as the sum of mnp
determinants.

Example 1. Shew that b + c

c + a

a + b

a- b

b-c

c — a

a

b

c

— Babe -a3 - b3 — c3 .

The given determinant

b
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and the last two of these determinants vanish [Art. 494 Cor.].

Tims we see that the given determinant is equal to a new one whose

first column is obtained by subtracting from the constituents of

the first column of the original determinant equimultiples of the

corresponding constituents of the other columns, while the second

and third columns remain unaltered.

Conversely,

a

C
2

c.

a
{
+ j)b

x
+ qc

}
b

{

a
., + PK + <7C2 ^2

c„

and what has been here proved with reference to the first column

is equally true for any of the columns or rows ; hence it appears

that in reducing a determinant we may replace any one of the

rows or columns by a new row or column formed in the following

way

:

Take the constituents of the row or column to be replaced,

and increase or diminish them by any equimidtij)les of the cor-

responding constituents of one or more of the other rows or

columns.

After a little practice it will be found that determinants

may often be quickly simplified by replacing two or more rows

or columns simultaneously : for example, it is easy to see

that

a
i
+ 2 }b

}
b

}
- qc

x
c,

% +Ph
2 K ~ C1C2 °2

a
3 +2jb

3 K-Qc
s

c
3

€l
l

Ct
2

a..

b
2

b„ c.,

but in any modification of the rule as above enunciated, care

must be taken to leave one row or column unaltered.

Thus, if on the left-hand side of the last identity the con-

stituents of the third column were replaced by c
l
+rali

c
2
+ ra^

c, + ra respectively, we should have the former value in-

creased by

a
x
+ 2>b

t
b

x

— qc
x

ra
x

«
a
+ i'K K - vci

ra„

ra..
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and of the four determinants into which this may be resolved

there is one which does not vanish, namely

ra,

pb
s

- qc
2

. „
9

ra

Example 1, Find the value of I 29 26 22

25 31 27

! 63 54 46

The given determinant

3 26-4l = -3x4x
-6 31 -4

9 54 -8

1
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[Explanation. In the first new determinant the first row is the sum of
the constituents of the three rows of the original determinant, the second
and third rows being unaltered. In the third of the new determinants the
first column remains unaltered, while the second and third columns are
obtained by subtracting the constituents of the first column from those of
the second and third respectively. The remaining transformations are suffi-

ciently obvious.]

497. Before shewing how to express the product of two de-

terminants as a determinant, we shall investigate the value of

«i«i + &A + ^7, »A + hA + c
i?2

a
i

a
3 + bA + r

i7-s

Vi + KPt + c
*y, %% + hA + c*y2 «2

<*
3 + hA + c

aya

a
3
a

i
+ hA + Wi %% + bA + ^

3y2 «3a3 + &A + c
3y3

From Art. 495, we know that the above determinant can be
expressed as the sum of 27 determinants, of which it will be
sufficient to give the following specimens :

a
3
a
2

*1<S

«
2
ft

3

«3a3

a
x

a
{
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.(2).

(3).

where X
l
= a^ + a

2
x

2\

^=A*i+/W
Substituting for X, and X

2
in (1), we have

(a^ + 6^) x, + (a^+bfij x
2
= 0\

(a
t
a

x
+ b

2P }
) x

x

+ (a
2
a, + bfi2 )

x
2
= Oj

In order that equations (3) may simultaneously hold for

values of x
x

and x2
other than zero, we must have

a^ + bfr a
x
a

2
+ bfi2

= (4).

But equations (3) will hold if equations (1) hold, and this

will be the case either if

a
a

b
2

(5),

or if X
l

= and X
2
= 0;

which last condition requires that

a.

a.

ft

ft

= o .(6).

Hence if equations (5) and (6) hold, equation (4) must also

hold ; and therefore the determinant in (4) must contain as

factors the determinants in (5) and (6) ; and a consideration of

the dimensions of the determinants shews that the remaining

factor of (4) must be numerical ; hence

«i
a

i
+ &A »ia, + hA

the numerical factor, by comparing the coefficients of afyafl,
on the two sides of the equations, being seen to be unity.

a
l
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12. Without expanding the determinants, prove that

a

x

P

b

y

c

z

r

x

z

b

a

c

1

P
r

x

P
a

y

b

z

r

c

13. Solve the equations

14.

15.

16.

17.

1

1

1

1

a

a?

x

x2

a

b

c i

1

b

y

y
2

zx

a"

b2

1

c

c3

= (b-c)(c- a) (a - b).

= (b - c) (c - a) (a - b) (a+ b + c).

6

*2

18.

19.

yz zx xy

-la a+ b

b+ a -26

c + a c+b

(b+cY

62

^2

= (y-z)(z-x) (x -y)(yz + zx+ xy).

a+ c

b + c

-2c

4(b + c)(c+ a)(« + b).

{c+ af
a-

62

(a+bf

2dbc{a+b+cf.

20. Express as a determinant f

c

b

c b

1)
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22. Fi
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499. The properties of determinants may be usefully em-

ployed in solving simultaneous linear equations.

Let the equations be

a
x
x + h

x
y + c

x
z + d

x
= 0,

a
2
X + b

2y + c
2
z + d

2
= 0,

aja + bg + cji + d^O;

multiply them by A
lt
-A

s
, A.

A
respectively and add the results,

A , A j A 3
being minors of alt

a2i a
a
in the determinant

D = a,

a„

*,

«3 ^3 ^

The coefficients of y and z vanish in virtue of the relations proved

in Art. 493, and we obtain

(Mi -M* +M 3) * + (M i
-M 2 + Mb) = °-

Similarly we may shew that

(6,5, - 6A + 6A) 2/ + (<*A - <*A + <*A) = 0,

and

fcff, - e,C, + c
3
C

3 ) + (dfi, - dfia + d
3
C,) = 0.

Now «A - a
t
A, +«A - - (6,5, - 6,5, + 6A)

hence the solution may be written

x —y z

<*,
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a
x
x + b

x
y + c,s + d

x

u — 0,

a
2
x + b

2y + c
2
z + d

2
u = 0,

a
3
x + b

3y + c
3
z + d

3
u = 0,

ax + b Ay + c Az + du = 0.
4 W 4 4

From the last three of these, we have as in the preceding article

x —y z — u

K
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The left-hand member of this equation is a determinant which

consists of n rows and n columns, and is called a determinant of

the II
th

- order.

The discussion of this more general form of determinant is

beyond the scope of the present work ; it will be sufficient here

to remark that the properties which have been established in the

case of determinants of the second and third orders are quite

general, and are capable of being extended to determinants of

any order.

For example, the above determinant of the nth order is

equal to

a
1
A

1
-b

1
B

l
+ c

1
C

1
-d

1
D1+ ... + (-l)"- 1 k

1
K

l ,

or ct
l
A

1
-a

2
A

2
+ a

B
A

3
-a

4
A

4
+ ... + (-1)"- 1 an

A n ,

according as we develop it from the first row or the first column.

Here the capital letters stand for the minors of the constituents

denoted by the corresponding small letters, and are themselves

determinants of the (n-l) th order. Each of these may be ex-

pressed as the sum of a number of determinants of the (n — 2)
th

order ; and so on ; and thus the expanded form of the deter-

minant may be obtained.

Although we may always develop a determinant by means of

the process described above, it is not always the simplest method,

especially when our object is not so much to find the value of

the whole determinant, as to find the signs of its several

elements.

502. The expanded form of the determinant

a
l
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cording as it can be deduced from the leading element by an
even or odd number of permutations of two suffixes ; for instance,

the element a
3
b
2
c

1

is obtained by interchanging the suffixes 1 and

3, therefore its sign is negative ; the element ajb
1
c
2

is obtained

by first interchanging the suffixes 1 and 3, and then the suffixes

1 and 2, hence its sign is positive.

503. The determinant whose leading element is a
x

b
2
c
3
dA ...

may thus be expressed by the notation

%^aJ>a
e
B
d
A ,

the 2 * placed before the leading element indicating the aggregate

of all the elements which can be obtained from it by suitable

interchanges of suffixes and adjustment of signs.

Sometimes the determinant is still more simply expressed by
enclosing the leading element within brackets; thus (a^crf ...)

is used as an abbreviation of 5 ± a,b„c„dA ....

Example. In the determinant (a^c^e^ what sign is to be prefixed to

the element a^c^e.,1

From the leading element by permuting the suffixes of a and d we get
a 4

b2c3dx
e
5 ; from this by permuting the suffixes of b and c we have a4b3c2

d
1
e
5 ;

by permuting the suffixes of c and d we have aib.ic 1
d2e5 ; finally by permuting

the suffixes of d and e we obtain the required element rt4&3c1
rf5?2 ; and since

we have made four permutations the sign of the element is positive.

504. If in Art. 501, each of the constituents 6 , c , ... k is

equal to zero the determinant reduces to a A ; in other words
it is equal to the product of a

y
and a determinant of the (n — l)th

order, and we easily infer the following general theorem.

If each of the constituents of the first row or column of a
determinant is zero except the first, and if this constituent is equal
to m, the determinant is equal to m times that determinant of lower

order ivhich is obtained by omitting the first column and first

row,

Also since by suitable interchange of rows and columns any
constituent can be brought into the first place, it follows that if

any row or column has all its constituents except one equal to

zero, the determinant can immediately be expressed as a deter-

minant of lower order.

This is sometimes useful in the reduction and simplification

of determinants.
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Example. Find the value of
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EXAMPLES. XXXIII. b.

Calculate the values of the determinants

1. 1 1

I 2

3.

1

1

a

1

1

3

4

1
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Solve the equations

:

12. x+ y+ 0=1,

ax+ by+ cz=k,

a2x + b2y+ c2z= l 2
.

14.

15.

where

13. ax+ by+ cz=k,

a2x+

b

2y + c2z=

k

2
,

a?x+ b3y + c?z= P.

x+ y+ z+ u=l,

ax + by + cz+ du=k,

a2x+ b2y+ c2z+ d2u= k2
,

cfix+ bsy + c3z+ d3u= P.

Prove that

b+c—a—d
c+a—b—d
a+b-c-d

16. Prove that

be — ad be (a+ d)-ad(b-t-c)

ca — bd ca(b-\-d) — bd(e+ a)

ab — cd ab (c+ d) -cd{a+ b)

= -2 (b- e) (c-a) (a-b) (a-d) (b - d) (c-d).
\

a2 a2 -(b — c)
2

b2 b2 -(c-a)2

c2 c2 - (a - b)2

be

ca

ab

= (b-c)(c-a){a-b)(a+ b+ c)(a2+ b2+ c2).

17. Shew that

a b

f «

e f
d e

c d

b c

c

b

a

d

c

b

f cc

e f
d e

e

d

c

b

a

f

f
e

d

c

b

a

ABC
CAB
B C A

A=a2 -d 2+ 2ce -2bf,

B=e2 -b2 +2ac-2df,
C=e2 -f 2+ 2ae-2bd.

18. If a determinant is of the ?i
th order, and if the constituents

of its first, second, third, ...n
th rows are the first n figurate numbers of

the first, second, third, ...n
th orders, shew that its value is unity,.



CHAPTER XXXIV.

MISCELLANEOUS THEOREMS AND EXAMPLES.

506. We shall begin this chapter with some remarks on the

permanence of algebraical form, briefly reviewing the fundamental

laws which have been established in the course of the work.

507. In the exposition of algebraical principles we proceed

analytically : at the outset we do not lay down new names and
new ideas, but we begin from our knowledge of abstract

Arithmetic ; we prove certain laws of operation which are capable

of verification in every particular case, and the general theory of

these operations constitutes the science of Algebra.

Hence it is usual to speak of Arithmetical Algebra and Sym-
bolical Algebra., and to make a distinction between them. In the

former we define our symbols in a sense arithmetically intelligible,

and thence deduce fundamental laws of operation ; in the latter

we assume the laws of Arithmetical Algebra to be true in all

cases, whatever the nature of the symbols may be, and so find

out what meaning must be attached to the symbols in order that

they may obey these laws. Thus gradually, as we transcend the

limits of ordinary Arithmetic, new results spring up, new lan-

guage has to be employed, and interpretations given to symbols
which were not contemplated in the original definitions. At the

same time, from the way in which the general laws of Algebra
are established, we are assured of their permanence and uni-

versality, even when they are applied to quantities not arithmeti-

cally intelligible.

508. Confining our attention to positive integral values of

the symbols, the following laws are easily established from a priori

arithmetical definitions.
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I. The Law of Commutation, which we enunciate as follows

:

(i) Additions and subtractions may be made in any order.

Thus a + b-c = a-c + b = b-c + a.

(ii) Multiplications and divisions may be made in any order.

Thus axb=bxa;

axbxc = bxcxa = axcxb'
}
and so on.

ab-±- c = a x b -=- c = (a -f- c) x b = (b + c) xa.

II. The Law of Distribution, which we enunciate as follows :
|

Multiplications and divisions may be distributed over additions

and subtractions.

Thus {a - b + c) m = am—bm + cm,

(a — b)(c — d) = ac — ad — bc + bd.

[See Elementary Algebra, Arts. 33, 35.]

And since division is the reverse of multiplication, the distri-

butive law for division requires no separate discussion.

III. The Laws of Indices.

(i) am xan = am+n
3

am + aH = am-".

(n) [a ) = a .

[See Elementary Algebra, Art. 233 to 235.]

These laws are laid down as fundamental to our subject, having

been proved on the supposition that the symbols employed are

positive and integral, and that they are restricted in such a way
that the operations above indicated are arithmetically intelligible.

If these conditions do not hold, by the principles of Symbolical

Algebra we assume the laws of Arithmetical Algebra to be true

in every case and accept the interpretation to which this assump-
tion leads us. By this course we are assured that the laws of

Algebraical operation are self-consistent, and that they include in

their generality the particular cases of ordinary Arithmetic.

509. From the law of commutation we deduce the rules

for the removal and insertion of brackets [Elementary Algebra,

Arts. 21, 22] ; and by the aid of these rules we establish the law
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of distribution as in Art. 35. For example, it is proved that

(a -b)(c — d)~ac — ad—bc + bd,

with the restriction that a, b, c, d are positive integers, and a
greater than b, and c greater than d. Now it is the province of

Symbolical Algebra to interpret results like this when all restric-

tions are removed. Hence by putting a = and c = 0, we obtain

(— b) x (— d) = bd, or the product of two negative quantities is

positive. Again by putting 6 = and c= 0, we obtain a x (—d) =—a<I,

or the product of two quantities of opposite signs is negative.

"We are thus led to the Rule of Signs as a direct consequence
of the law of distribution, and henceforth the rule of signs is

included in our fundamental laws of operation.

510. For the way in which the fundamental laws are applied
to establish the properties of algebraical fractions, the reader is

referred to Chapters xix., xxi., and xxn. of the Elementary Algebra

;

it will there be seen that symbols and operations to which we
cannot give any a priori definition are always interpreted so as

to make them conform to the laws of Arithmetical Algebra.

511. The laws of indices are fully discussed in Chapter xxx.
of the Elementary Algebra. When m and n are positive integers

and m > n, we prove directly from the definition of an index that

am xan = am+n
;

am -r a'
1 = am

~ n

j
(a

m
)

n = am".

We then assume the first of these to be true when the indices

are free from all restriction, and in this way we determine mean-
ings for symbols to which our original definition does not apply.

p

The interpretations for a\ a , a~" thus derived from the first law
are found to be in strict conformity with the other two laws

;

and henceforth the laws of indices can be applied consistently and
with perfect generality.

512. In Chapter vill. we defined the symbol i or J— 1 as

obeying the relation i
2 = — 1 . From this definition, and by

making i subject to the general laws of Algebra we are enabled
to discuss the properties of expressions of the form a + ib, in

which real and imaginary quantities are combined. Such forms
are sometimes called complex numbers, and it will be seen by
reference to Articles 92 to 105 that if we perform on a complex
number the operations of addition, subtraction, multiplication,

and division, the result is in general itself a complex number,
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Also since every rational function involves no operations but

those above mentioned, it follows that a rational function of a

complex number is in general a complex number.

Expressions of the form ax+ly
, \og(x±iy) cannot be fully-

treated without Trigonometry; but by the aid of De Moivre's

theorem, it is easy to shew that such functions can be reduced to

complex numbers of the form A + iB.

The expression e
x+iy

is of course included in the more general

form ax+i\ but another mode of treating it is worthy of attention.

We have seen in Art. 220 that

(x\ n

1 H—
) , when n is infinite,

nj

x being any real quantity ; the quantity e
x+i!/ may be similarly

defined by means of the equation

e
*+iy = Lini (1 H ) , when n is infinite,

\ n J

x and y being any real quantities.

The development of the theory of complex numbers will be

found fully discussed in Chapters x. and XI. of Schlomilch's

Handbuch der algebraischen Analysis.

513. We shall now give some theorems and examples illus-

trating methods which will often be found useful in proving

identities, and in the Theory of Equations.

514. Tofind the remainder ivhen any rational integralfunction

of x is divided by x - a.

Let fix) denote any rational integral function of x ; divide

f(x) hyx-a until a remainder is obtained which does not involve
x ; let Q be the quotient, and R the remainder ; then

f(x) = Q(x-a) + R.

Since R does not involve x it will remain unaltered whatever
value we give to x

;
put x = a, then

f(a) = QxO + R;

now Q is finite for finite values of x, hence



.MISCELLANEOUS THEOREMS AND EXAMPLES. 433

Cor. Iff{x) is exactly divisible by x - a, then R == 0, that is

f(a) = ; hence if a rational integralfunction of x vanishes when

x — a, it is divisible by x - a.

515. The proposition contained in the preceding article is so

useful that we give another proof of it which has the advantage

of exhibiting the form of the quotient.

Suppose that the function is of n dimensions, and let it be

denoted by

p xn

+2\x
"~ }+ P^"~

2

+P-^""
3+ -+P»>

then the quotient will be of n - 1 dimensions ; denote it by

q{fc"-
x +

qix
n - 2 +q2

xn - 3 + ... +q H _ l ;

let R be the remainder not containing x ; then

pjf +p
1
x- 1

+2>2
x'-

2
+p.ax"~

3
+ ••• +P„

= (x-a) (q X^ + qix"~
2 + q2

x"~
3 + ... + qa_ x)

+ R
Multiplying out and equating the coefficients of like powers of x,

we have

9.2
- aQi=P2 >

or qs
= a4i+Pa

'>

q3 - n2 = ihi or & = «<i2
+ ih ;

R - oq
n- %=Pn , or R = aq

n_ l
+pn ;

thus each successive coefficient in the quotient is formed by
multiplying by a the coefficient last formed, and adding the

next coefficient in the dividend. The process of finding the

successive terms of the quotient and the remainder may be

arranged thus

:

Po Pi P2 P3 Pa-X Pa

«?0 Ct(
lx

Cl(l2
Cl(In-2 (l(2n-l

% q x % v, ?.-, x

Thus R = aq^ +p n
- « («<?„-- +#.-i) + P* =

=P<P* +P^"~
1

+P/<<
n ~ 2

+ ••• +P,r

If tlie divisor is x + a the same method can be used, only in

this case the multiplier is - a.

H. H. A. 28
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Example. Find the quotient and remainder when 3a;7 - a;
6 + 31a:4 + 21a; + 5

is divided by x + 2.

Here the multiplier is - 2, and we have

3-10 31 00 21 5

-6 14 -28 -6 12 -24 6

3 -7 14 3 -6 12 - 3 11

Thus the quotient is 3.r6 - 7a;5 + 14a;4 + 3a;3 - 6a;2 +12a;-3, and the re-

mainder is 11.

516. In the preceding example the work has been abridged

by writing down only the coefficients of the several terms, zero

coefficients being used to represent terms corresponding to powers

of x which are absent. This method of Detached Coefficients may
frequently be used to save labour in elementary algebraical

processes, particularly when the functions we are dealing with

are rational and integral. The following is another illustration.

Example. Divide 3a;5 - 8a;4 - 5a;3 + 26a;2 - 33a; + 26 by a;
3 - 2a;

2 - 4a; + 8.

1 + 2 + 4-8)3-8- 5 + 26-33 + 26(3-2 + 3

3 + 6 + 12-24
-2 +
-2-
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we form the next horizontal line, and add the terms in the third column;
this gives 3, which is the coefficient of the third term of the quotient.

By adding up the other columns we get the coefficients of the terms in
the remainder. ]

Example. Divide 6a5+ ba*b - 8a?b2 - 6a2b3 - 6a¥ by 2a3 + 3a26 - b z

to four terms in the quotient.

2
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Put z = 0, then A = 3, being the coefficient of x2

y in the ex-

pansion of (x + y)
3

.

Put x = y = z = l, and we get 27 = 3 + (3 x 6) + B ; whence

B = 6.

Thus (x + y + z)
3

= x3 + y
3 + z

3 + 3x2
y + 3xy2 + 3y

2
z + 3yz2 + 3z

3x + 3zx2 + 6xyz.

520. A function is said to be alternating with respect to its

variables, when its sign but not its value is altered by the inter-

change of any pair of them. Thus x — y and

a2 (b-c) + b
2 (c-a) + c

2
(a - b)

are alternating functions.

It is evident that there can be no linear alternating function

involving more than two variables, and also that the product of

a symmetrical function and an alternating function must be an
alternating function.

521. Symmetrical and alternating functions may be con-

cisely denoted by writing down one of the terms and prefixing

the symbol % ; thus %a stands for the sum of all the terms of which
a is the type, %ab stands for the sum of all the terms of which
ab is the type; and so on. For instance, if the function involves
four letters a, b, c, d

}

^a-a + b + c + d;

%ab = ab + ac + ad +bc + bd+ cd;
and so on.

Similarly if the function involves three letters a, b, c,

$a2
(b -c) = a2 (b-c)± b

2
(c - a) + c

2
(a - b) •

%a2
bc = a2

bc + b
2
ca + c

2
ab;

and so on.

It should be noticed that when there are three letters involved
%a2

b does not consist of three terms, but of six : thus

2<a
2
b = a2

b + a2
c + b

2
c + b

2a + c
2a + c

2
b.

The symbol 2 may also be used to imply summation with
regard to two or more sets of letters; thus

%yz (b-c) = yz (b~c) + zx (c-a) + xy (a - b).
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522. The above notation enables us to express in an abridged

form the products and powers of symmetrical expressions : thus

(a+b + c)
3 = %a3 + 32a2

b + Gabc
j

(a + b + c + df = 2«3 + 3$a2
b + Gtabc;

(a + b + c)
4 = %aA + i%cfb + 6Sa"6fl + 1 2%a2

bc;

%a x 2«2 = 2a3 + %a2
b .

Example 1. Prove that

(a + b) 5 - a5 - b*= 5ab (a + b) (a 2 + ab + b2
).

Denote the expression on the left by E ; then E is a function of a which
vanishes when a = ; hence a is a factor of E ; similarly 6 is a factor of E.
Again E vanishes when a— - b, that is a + b is a factor of E; and therefore

E contains ab(a + b) as a factor. The remaining factor must be of two
dimensions, and, since it is symmetrical with respect to a and b, it must be

of the form Act? + Bab + Ab'z ; thus

(a + b) 5 - a5 - b5= ab (a + 6) (Aa* + Bab + A b~),

where A and B are independent of a and b.

Putting a = 1, b= 1, we have 15= 2A + B
;

putting a = 2, b = - 1, we have 15 = 5A - 2B
;

whence A = o, J5 = 5; and thus the required result at once follows.

Example 2. Find the factors of

(&3 + c3) (b-c) + (c
3 + a3

)
(c-a) + (a 3 + b3

)
(a - b).

Denote the expression by E ; then E is a function of a which vanishes
when a = b, and therefore contains a - b as a factor [Art. 514]. Similarly it

contains the factors b-c and c-a; thus E contains (b - c) (c - a) (a - b) as a
factor.

Also since E is of the fourth degree the remaining factor must be of the
first degree; and since it is a sj^mmetrical function of a, b, c, it must be of

the form M{a + b + c). [Art. 518];

.-. E =M (b-c) (c-a) (a-b)(a + b + c).

To obtain M we may give to a, b, c any values that we find most con-
venient; thus by putting a = 0, 6 = 1, c = 2, we find M=l, and we have the
required result.

Example 3. Shew that

(x + y + zjt-x5 -yb - z?= 5 (y + z) (z + x) (x + y) (x2 + y
2 + z~ + yz + zx+ xy).

Denote the expression on the left by E ; then E vanishes when y=-z,
and therefore y + z is a factor of E; similarly z + x and x + y are factors;

therefore E contains (y + z) (z + x) [x + (/)asa factor. Also since E is of the
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fifth degree the remaining factor is of the second degree, and, since it is

symmetrical in x, y, z, it must be of the form

A (x2 + y
2 + z2) + B (yz + zx + xy) .

Put»=2/=z=l; thus 10=^1+5;

put x=2, y=l, 2 = 0; thus 35 = 5A + IB ;

whence A=B = 5,

and we have the required result.

523. We collect here for reference a list of identities which
are useful in the transformation of algebraical expressions; many
of these have occurred in Chap. xxix. of the Elementary Algebra.

^bc (b — c) = —(b-c)(c- a) (a - b).

$a2 (b-c) = -(b-c)(c-a)(a-b).

$a(b2 -c2

) = (b-c)(c-a)(a-b).

2a3 (b-c) = -(b-c) (c-a) (a-b) (a + b + c).

as + b
3 + c

3 - 3abc = (a + b + c)(a2+b 2+ c
2- bc-ca- ab).

This identity may be given in another form,

a3
+ b

3 + c
3 -3abc = l(a + b + c){(b-c) 2 + (c-a) 2 + (a-b) 2

}.

(b-c)3 + (c-a)3 + (a-b) 3 = 3(b-c)(c-a)(a-b).

(a + b + c)
3 -a3 -b3 -c3 = 3(b + c)(c + a)(a + b).

Hbc (b + c) + 2abc = (b + c)(c + a)(a + b).

%a2
{b + c) + 2abc =(b + c)(c + a) (a + b).

(a + b + c) (be + ca + ab) - abc =(b + c)(c + a) (a + b).

2b
2
c
2 + 2cV + 2a2

b
2 -tf-fr-c*

= (a + b + c)(b + c-a)(c + a-b)(a+b-c).

EXAMPLES. XXXIV. a.

1. Find the remainder when 3^+ 11^+ 90#2 - 19# + 53 is divided
by x + 5.

2. Find the equation connecting a and b in order that

2xi -7x3+ax+ b

may be divisible by x - 3.
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3. Find the quotient and remainder when

jfi _ 5#4 + 9iV
3 _ qxi _ iq v+ 13 j >s divided by x2 - 3v+ 2.

4. Find a in order that x3 -7x+ 5 may be a factor of

tf _ 2xA - 4^+ 19.V2 - Six+ 12 + a.

5. Expand^.^^.g ^ descending powers of x to four

terms, and find the remainder.

Find the factors of

6. a(6-c)3+ 6(c-a)3+ c(a-6)3.

7. a4 (6
2 - c2) + 64 (c2 - a2

) + c4 (a2 - 62
).

8. (a+ 6 + c)3 -(6 + c-a)3 -(c+a-6)3 -(a + 6-c)3
.

9. a (6 - cf+ & (c - af+ c(a- 6)
2+ 8a6c.

10. a (6
4 - c4) + b (c4 - a4

) + c(ai - 64).

11. (6c+ ca+ a6)3 - J3**
3 - c%3 - a363 .

12. (a+ 6 + c)
4 -(6 + c)4 -(c + a)4 -(a+ 6)

4+ a 4 + 64+ c4.

13. (a+ 6 + c)
5 -(6+ c-a)5 -(c+ a-6)5 -(a + 6-c)5

.

14. (tf - a)3 (6 - cf+ (x - b)s (c - af+ (x - c) 3 (a - 6)
3

.

Prove the following identities :

15. 2 (6 + c - 2a)3= 3(6+ c- 2a) (c+ a- 26) (a+ 6- 2c).

a(b-cf He-*)* c{a-bf _fl|M . gi0,
(c-a)(a-6r (a-6)(6-cr (6-c)(c-a)

17 J^ _?L 2c (6-c)(c-a)(a-6)_
3

'" a+ 6 6+ c c+ a (6+ c)(c + a)(a+6)

18. 2a2(&+c)-2a3 -2a&c=^& + c-a)(c+ a-6)(a+ &-c)-

iy
* (a-6)(a-c)^(6-c)(6-a)^(c-a)(c-6)

20. 42(6-c)(6+ c-2a)2= 92(6-c)(6 + c-a) 2
.

21. ty+z)*(e+x)*(x+y)*=tx*(y+zY+2(^z)3-2^2
z*'

22. ^ («6 - c2) (ac- 62
) = (26c) (26c - 2a2

).

23. «6c (2a)3 - (26c)3= abc2a 3 - 263c3= (a2 - 6c) (6
2 - ca) (c2 - a6).

24. 5(6- c) 3 (6 + c - 2a) = ; hence deduce 2 - y) (£+ 7 - 2a
)
3= °-
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25. (b + cf+(c+ af+(a+ bf-Z(b + c)(c+ a)(a+ b)

= 2(a3 -\-b
3 + c3 -3abc).

26. If x=b+c-a, y= c + a-b, z= a + b-c, shew that

#3 +^3+# _ g^g= 4 (a3+ 63 + c3 - 3a6c).

27. Prove that the value of a3 + b3 + c3 - 3a6c is unaltered if we
substitute s-«. s- b, s-c for a, 6, c respectively, where

3s= 2(a + 6+ c).

Find the value of

28. , ,w « w i + /1
»_w_ » +(a-b)(a-c)(x-a) (b-c)(b-a)(x-b) (c-a) (c-b) (x-c)'

a2 — b2 — c2 b2 — c
z — a2 c2 — a2 - Z>

2

29. 7 ft7 ;+77 wt x +
(a -b)(a- c) (b -c)(b — a) (c -a) (c-b)

'

30. (
a +P)(a+ <l)

,

(b+p)(b+ q) + (
c +p)(c+ (J)

(a-b)(a-c)(a+x) (b-c)(b-a) (b+ x) (c-a) (c-b)(c+ x)
'

31. 3__w^ w ^ . 32. s
(a -b) (a- c) (a — d)' (a- b) (a — c) (a- d)

'

33. If x+y+ z= s, and #yz =£<2
,shew that

'jp _y\(p__z\ + fp__ A /£. _ #\ + /£ _ A /> _ y\ 4

,y« p)\zs p) \zs pj\xs p) \xs pj\ys p)
'

"

8

Miscellaneous Identities.

524. Many identities can be readily established by making
use of the properties of the cube roots of unity; as usual these
will be denoted by 1, w, o>

2
.

Example. Shew that

(x + yf -x7 -y7= Ixy (x + y) (x2 + xy + y
2
)

2
.

The expression, E, on the left vanishes when x = 0, y = 0, x + y = 0;
hence it must contain xy (x + y) as a factor.

Putting x = coy, we have

E= {(1 + ta)7 - W7 - 1} y7= {(_ w2)7 _ w7 _ !} y
i

= (_ w2 - w -l)y7= 0;

hence E contains x - wy as a factor ; and similarly we may shew that it con-
tains x - ury as a factor; that is, E is divisible by

(x- ury) (x - to
2
?/), or x^ + xy + y

2
.
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Further, E being of seven, and xy(x + y) (x2 + xy + y
2
) of five dimensions,

the remaining factor must be of the form A (x2 + y'2
) + Bxy ; thus

(x + y)
7 - x7 - y

7 = xy {x + y) (x2 + xy + y
2
)
(Ax2 + Bxy + Ay2

).

Putting a;= l, y= l, we have 21 = 2^+5;
putting x

=

2, y=- 1, we have 21 = 5^1 -2B;

whence A = 7, B = 7

;

.-. (x + y)
7 - x7 - y

7 = Ixy (x + y)(x2 + xy + y
2
)

2
.

525. We know from elementary Algebra that

aa + b
3 + c

3 - 3abc = (a+ b + c) (a
2 + b

2 + c
2 -be- ca — ab)

;

also we have seen in Ex. 3, Art. 110, that

a* + b
2 + c

2 — be — ca — ab = (a + ub + ore) (a + <a
2
b + wc)

;

hence a3 + b
3 + c

3 — 3abc can be resolved into three linear factors;

thus

a3 + b
3 + c

3 - 3abc = (a + b +c) (a + mb + arc) (a + <D
2
b + wc).

Example. Shew that the product of

a3+ b3 + c3 - dabc and a;
3 + y

3 + z3 - Sxyz

can be put into the form A3 +B3 + C3 - SABC.

The product = [a + b + c) (a + wb + ore) (a + w2& + wc)

x (x + y + z) (x + uy + urz) (x + w2
y + uz).

By taking these six factors in the pairs (a + b + c) (x + y + z);

(a + u>b + w2
c) (x + cry + uz) ; and (a + urb + uc) (x + wy + urz),

we obtain the three partial products

A + B + C, A + wB + u-C, A+u2B + u)C,

where A = ax + by + cz, B — bx + cy + az, C= cx + ay + bz.

Thus the product= (A + B + C) [A + wB + u2C) (A + orB + «C)

= A 3 + B3+C3 -SABC.

526. In order to find the values of expressions involving

a, b, c when these quantities are connected by the equation

a + b + c = 0, we might employ the substitution

a — h + k, b = ioh + (x>

2
k, c = ufh + u>k.

If however the expressions involve a, b, c symmetrically the

method exhibited in the following example is preferable.
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Example. If a + b + c = 0, shew that

6 (a5 + b5 + c
5
) = 5 (a3 + 63+ c3) (a2 + 62 + c2).

We have identically

(1 + ax) (1 + bx) (1 + cz) = 1 +px + qx2 +rx3
,

where p — a + b + c, q = bc + ca + ab, r— abc.

Hence, using the condition given,

(1 + ax) (1 -t bx)(l + cx) = l + qx2+ rx3 .

Taking logarithms and equating the coefficients of xn , we have

(~ '
(an + bn + c

n
) = coefficient of xn in the expansion of log(l + qx2+ rx3

)

n

= coefficient of xn in [qx2 + rx3) - ^ {qx2 + rx3
)
2+ ^ (qx2 + rx3

)

3 - . .

.

By putting rc= 2, 3, 5 we obtain

a2 + b2+ c2 a3 + b3+ c3 a5 + b5+c5

j— =*• 3— =r
' T- = - <?r;

whence »-— = ~ • « '

and the required result at once follows.

If a=fi-y, 6= 7 -a, c = a-/3, the given condition is satisfied; hence

we have identically for all values of a, /3, y

6{(iS-7) 5 + (7-«) 5 +("-/3) 5
}

= 5{(/3- 7)
3+ (Y-a) 3 + (a-/3) 3

} {{§- y?+ (y- a) 2 + (a-/S)2
}

that is,

(/3-7)
5 + (7-a)5 + (a-^) 5=5(

J
8-7)(7 -a)(a- i

3)(a2 +^ + 7
2 -/37-7a-a^;

compare Ex. 3, Art. 522.

EXAMPLES. XXXIV. b.

1. If (a + b + cf = a3 + bz + c3, shew that when n is a positive

integer (a+ b+ cfn +

1

= a2n +

1

+ b2n +

1

+ c2n + K

2. Shew that

(a+ <ob+ a)
2c)3+ (a+ a>

2b + a>c)
3= (2a - b - c) (2b - c - a) (2c - a - b).

3. Shew that (x+y)n -x1l -yn is divisible by xy(x2+xy+y2
), if

n is an odd positive integer not a multiple of 3.

4. Shew that

a3 (bz - cy) 3+ b3 (ex - azf+ c3 (ay - bx)3= Sabc (bz - cy) (ex - az) (ay - bx).
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5. Find the value of

(6 -c)(c — a) (a-b) + (b- a>c) (c - a>a) (a - cob)+ (6 - eo
2
c) (c - arc<) (a - a>

2
6).

6. Shew that (a2 + b2+ c2 - be — ca - ab) (x2 -f y
2 + z2—yz - zx - xy)

may be put into the form A2+B2 + C2-BC-CA- AB.

7. Shew that (a2 + ab + b2
) (x

2+ xy + y
2
) can be put into the form

A 2+AB+B2
, and find the values of A and B.

Shew that

8. 2 («
a + 26c)3 - 3 (a2+ 26c) (6

2+ 2ca) (c2 + 2ab) = (a3 + 63 + c3 - 3a6c)2
.

9. 2 (a2 - fc)3 - 3 (a2 - be) (b2 - ca) (c2 - ab)= (a3 + 63+ c3 - 3a6c)2
.

10. («
2+ 62+ c2

)
3+2(6c+ ca+ a6)3 -3(a2+ 62 + c2)(6c + ca+ a6)2

= (a?+b3+ c3 -3abc)2
.

If a+ 6+ c= 0, prove the identities in questions 11—17.

11. 2(a4+ 64+ c4) = (a2+ 62+ c2
)
2

.

12. a5 + 65 + c5= - 5a6c (6c+ ca+ ab).

13. a6+ 66 + c6= 3aW - 2 (6c+ ca+ a6)3
.

14. 3(a2 + 62 + c2)(a5+ 66+ c5)= 5(a3+ 63+ c3)(«
4+ 64+ c4).

,_ a7 + b7 + c7 a5+ 65+ c5 a0+ 62+ c2

15. m =
! • -R •

/6-c c--a a-b\ ( a b c \
16. +-—

-J
=9-

a b c J\b — c c — a a

17. (6
2c+ c2a+ a26 - 3a6c) (6c2+ ca2+ ab2 - 3abc)

= (be+ ca+ ab)3+ 27a262c2.

18. 25 {Q, - zf + (z - x)7 + (x - y)
7
} {{y - zf + (z- xf+ (x-yf)
= 21 {(y - zf+ (z - xf+ (x- yf]

2
.

19. {(y-z)2+ (z-xf+ (x-y)2
}
3 -54:(i/-z)2 (z-x)2 (x-yf

= 2(y + z-2x) 2 (z+x- 2y)
2 (x+y- 2z)2.

20. (6 - cf+ (e - a)6 + (a - 6)
6 - 3 (6 - c) 2 (c - a) 2 (a - bf

= 2 (a2+ b2+ c2 -be- ca- ab)3.

21. (6-c)7+ (c-a)7 + (a-6)7

= 7(6-c)(c-a)(a-6)(a2+ 62+ c2 -6c-ca-a6)2
.

22. If a + 6+ c= 0, and x+y + z= 0, shew that

4 (ax + by+ czf -3(ax+ by+ cz) (a2+

6

2+

c

2
) (x

2+y2+ z2)

-2(b-c)(c-a)(a-b)(y-z)(z- x) (x-y) = 54abcxyz.
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If a + b+ c + d=0, shew that

a5 + &5+c5 + c#> g?+ b3+ (?+ d3 a2+ b2+ c2 + d2

23. g 3— -•
2

24. (a3+ Z>
3+ c3+ d3

)
2= 9 (M

+

cda+ da& + abc) 2

= 9 (be- ad) (ca - bd) (ab - cd).

25. If 2s= a+ b + c and 2o-
2= a2+ 62 + c2

,
prove that

5 (s - b) (s - c) (a 2 - a2
) + 5a6cs= {s

2 - cr
2
)
(4s2+ a-

2
).

26. Shew that (a?+ 6.2%+ 3.vy2 - y
3
)
3+ (v3+ 6xy2+ 3x2y ~ x3

)
3

= Zlxy (x+y) (x2+ xy+y2
)
3
.

27. Shew that 2
a5

(a — b)(a — c) (a - d)

= a2+ b2+ c2+ d2 + ab + ac+ ad+bc + bd+cd.

28. Resolve into factors

2«262c2+ (a3+ b3+ c3) abc+ Z>
3c3 + c-%3+ a3

Z>
3

.

Elimination.

527. In Chapter xxxiii. we have seen that the eliminant of

a system of linear equations may at once be written down in the

form of a determinant. General methods of elimination ap-

plicable to equations of any degree will be found discussed in

treatises on the Theory of Equations ; in particular we may refer

the student to Chapters iv. and VI. of Dr Salmon's Lessons Intro-

ductory to the Modern Higher Algebra, and to Chap. xm. of

Burnside and Panton's Theory of Equations.

These methods, though theoretically complete, are not always
the most convenient in practice. We shall therefore only give a
brief explanation of the general theory, and shall then illustrate

by examples some methods of elimination that are more practi-

cally useful.

528. Let us first consider the elimination of one unknown
quantity between two equations.

Denote the equations by f(x) = Q and <£ (x) = 0, and suppose
that, if necessary, the equations have been reduced to a form in

which f(x) and <£ (x) represent rational integral functions of x.

Since these two functions vanish simultaneously there must be
some value of x which satisfies both the given equations ; hence
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the eliminant expresses the condition that must hold between the

coefficients in order that the equations may have a common root.

Suppose that x = a, x =
J3,

x = y,... are the roots of f(x) = 0,

then one at least of the quantities
<f>

(a),
<f> (/?), <f> (y), must

be equal to zero ; hence the eliminant is

4> (a)
<f> tf) <f> (y) =0.

The expression on the left is a symmetrical function of the

roots of the equation fix) = 0, and its value can be found by the

methods explained in treatises on the Theory of Equations.

529. We shall now explain three general methods of elimina-

tion : it will be sufficient for our purpose to take a simple

example, but it will be seen that in each case the process is

applicable to equations of any degree.

The principle illustrated in the following example is due to

Euler.

Example. Eliminate x between the equations

ax* + bx2 + cx + d= 0, fx2 + gx + h= 0.

Let x + k be the factor corresponding to the root common to both equa-
tions, and suppose that

ax3+ bx2 + ex + d= (x + k) (ax2 + lx + m),

and fx2+ gx + h= (x + k) (fx + n)
,

k, I, m, n being unknown quantities.

From these equations, we have identically

(axs + bx2 + cx + d)(fx + n) = (ax2 + Ix + m) (fx2 + gx + h).

Equating coefficients of like powers of x, we obtain

fl -an + ag-bf=0,

gl +fm -bn + ah- cf= 0,

Jd + gm- en - df= 0,

hm-dn =0.

From these linear equations by eliminating the unknown quantities I, in,

n, we obtain the determinant

/ a ag-bf

g f b ah-cf

h g c -df

h d

= 0.
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530. The eliminant of the equations f(x) = 0, <f>
(x) = can

be very easily expressed as a determinant by Sylvester's Dialytic

Method of Elimination. We shall take the same example as

before.

Example. Eliminate x between the equations

axs+ bx2 + cx + d= 0, fx2 +gx + h= 0.

Multiply the first equation by x, and the second equation by x and x2 in

succession ; we thus have 5 equations between which we can eliminate the 4

quantities x4
, xz

, x2
, x regarded as distinct variables. The equations are

ax* + bx2+cx + d=0,

axi + bx3+cx2 + dx =0,

fx2 + gx + h= 0,

fxs+ gx2 + hx = 0,

fx4 + gx3 + ltx2 =0.

Hence the eliminant is

a

/

a

b

/

9

b

c

f

9

h

c

d

9

h

d

h

= 0.

531. The principle of the following method is due to Bezout;

it has the advantage of expressing the result as a determinant of

lower order than either of the determinants obtained by the pre-

ceding methods. We shall choose the same example as before,

and give Cauchy's mode of conducting the elimination.

Example. Eliminate x between the equations

ax3 + bx2+ cx + d=0, fx2 + gx + h= 0.

From these equations, we have

a _ bx2 + ex + d

f gx2+hx '

ax + b cx + d
fx +g~ Jix

'

(ag - bf) x1+ {ah ~cf)x- df= 0,

(ah - cf) x2 +(bh - eg - df) x - dg= 0.

Combining these two equations with

fx2+gx + h= 0,

whence

and
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and regarding x'z and x as distinct variables, we obtain for the eliminant

f g h =o.

ag - bf ah -cf - df

a h - cf bh - eg -df - dg

532. If we have two equations of the form <£, (x, y) — 0,

<£.,(#, 2/)=0, then y may be eliminated by any of the methods
already explained; in this case the eliminant will be a function of x.

If we have three equations of the form

0, (*» y> z
) = °> 2 (^ y> z

) = °> 03 (
a;

> y» *) = °>

l>y eliminating z between the first and second equations, and then

between the first and third, we obtain two equations of the form

•A, (»> V) = °> ^ (
x

> y) = °-

If we eliminate y from these equations we have a result of

the form/* (a:) = 0.

By reasoning in this manner it follows that we can eliminate

n variables between n + 1 equations.

533. The general methods of elimination already explained

may occasionally be employed with advantage, but the eliminants

so obtained are rarely in a simple form, and it will often happen
that the equations themselves suggest some special mode of

elimination. This will be illustrated in the following examples.

Example 1. Eliminate Z, m between the equations

lx + my = a, vix-ly = b, Z
2 +m2 =l.

By squaring the first two equations and adding,

7-.c
2 + m-x2 + »»V + *V = a2 + &2

>

that is, (Z
2 + /»

2
)

(.t
2 + y*) = a2 + Z,

2
;

hence the eliminant is .t
2 + ?/

2= a2 + ZA

If Z = cos0, m= sin $, the third equation is satisfied identically; that is,

the eliminant of

x cos 6 + y sin 6= a , x sin 6 - y cos = Z>

is x2 + y*= a° + b*.
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Example 2. Eliminate x, y, z between the equations

y*+z*=zayz, z2 + x2 =bzx, x2 + y*= cxy.

v z z x . x
, yWe have * + -=a, - + ~ = h -+"= c 5

z y x z y x

by multiplying together these three equations we obtain,

w2 z 2 z2 z2 z2
y
2

.

z 2
t/

2
a;

2 sa 2/
2 X'

hence 2 + (a2 - 2) + (6
2 - 2) + (c

2 -2)= abc

;

.-. a2 + &2 +c2 -4= a&c.

Example 3. Eliminate #, ?/ between the equations

x2 -y2=px-qy, ±xy = qx+py, x2 + y
2=l.

Multiplying the first equation by x, and the second by y, we obtain

xs + Sxy~=p {x2 + y
2
)\

hence, by the third equation,

p = x3 + Sxy2
.

Similarly q = Bx2
y + y

s
.

Thus p + q={x+y) 3
>
p-q={x-y)3

\

.: (p + q)* + (p- q)* = {x + y)* + {x - yf
= 2(x2 + y

2
);

Example 4. Eliminate x, y, z between the equations

v z z x T x y?--- = a, = b, --^= c.

z y x z y x

x(y2 -z2)+y(z2 -x2)+z(x2 -y2
)We have a + o + c =

xyz

_{y-z){z-x) (x-y)

xyz

If we change the sign of x, the signs of b and c are changed, while the

sign of a remains unaltered

;

(y-z){z + x)(x + y)
hence a-b-c—

Similarly, b-c-a=

and c-a-b=

xyz

(y + z){z-x)(x + y)

xyz

(y + z)(z + x){x^y)

xyz
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.-. {a^b+c)(b + c-a){c + a-h){a + b-c) = -
{ul ~ Z

"
)2

^~fJ^ztl

\z y) \x z) \y x)

= -a?b-2c 2 .

.• . 26V + 2c2a2 + 2a262 - a4 - i4 - c4 + a262c2 = 0.

EXAMPLES. XXXIV. c.

1. Eliminate m from the equations

m2x — ?ny+a=0
}
my+ x=Q.

2. Eliminate m, n from the equations

m\v — my+ a= 0, n2x — ny+ a= 0, mn + 1 = 0.

3. Eliminate m, n between the equations

mx — ny — a (m2 — n2
), nx+my= 2amu, m2+ n2= 1

.

4. Eliminate p, q, r from the equations

p + q+ r— Of a(qr+rp+pq) = 2a-x,
apqr=y, qr= — 1.

5. Eliminate x from the equations

ax2 - 2a2x+ 1=0, a2+ x2 - 3ax= 0.

6. Eliminate m from the equations

y+mx=a (1 + ??i), wy - x— a (1 - m).

7. Eliminate a:, y, z from the equations

yz= a2
, zx=b2

, xy = c2 , x2+y2 + z2= d2
.

8. Eliminate p, q from the equations

x(p+ q)=y, p-q= k(l+pq), xpq= a.

9. Eliminate x, y from the equations

x — y= a, x2 — y
2= b2 , x3 —y3= c3

.

10. Eliminate x, y from the equations

x+y= a, x2+y2= b2, #*+#*=c*.

11. Eliminate x, y, z, u from the equations

x= by + cz + rfw
}

y=cz + cfo + a#,

2= cfti+ a#+ fry, w = cu;+ by + cs.

12. Eliminate x, y, z from the equations

x+y + z= 0, x2+y2+ z2= a2
,

aP+ff+sP^fc, ^,5+y5 + 25= c5 .

n. h. a. 29
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13. Eliminate #, y, z from the equations

y s # ' z^x^y ' \y zj\z xj\x y)

14. Eliminate #, y, z from the equations

ff
2 (y+z) = y

2 (z+ x) = g2 fo+ff) a^ a!l(
a3 b3 c3 abc

15. Eliminate x, y from the equations

4 (.r
2+

y

2
) = ax + Z>y, 2(x2 -y2

)= ax - by, xy=

c

2
.

16. Eliminate #, y, z from the equations

(y -f- z)
2= 4a2yz, (2;+ #)

2 = 46^, (a;

+

y)
2= 4c2#y.

17. Eliminate x, y, z from the equations

(x+y - z) (x-y + z)= ayz, (y+ z - x) (y - z+ x) = 6s#,

(z+x—y) (z — x + y) = cxy.

18. Eliminate a?, y from the equations

x2y=a, x(x-{-y) = b, 2x-\-y= c.

19. Shew that (a+6+ c)3 -4 (b+ c) (c+ a) (a+ 6) + 5a&c=0

is the eliminant of

cm;2+ fry
2+ cz2= ax+ by + cz=yz+ zx+ xy= 0.

20. Eliminate #, y from the equations

ax2 -t-by
2=ax+by= —— =c.

21. Shew that &3c3 + c%3+ a3P= 5a2b2c2

is the eliminant of

ax+yz= bc, by+ zx=cai
cz + xy= ab, xyz=abc.

22. Eliminate x, y, z from

x2+y2+z2=x + y+ z=l,

^(x-p)=-(y-q)= C
-{z-r).

23. Employ Bezout's method to eliminate x, y from

ax3 + bx2y+ cxy2+ dy3= 0, a'x3+ b'x2y+ c'xy2+ d'y3= 0.



CHAPTER XXXV.

THEORY OF EQUATIONS.

534. Ix Chap. ix. we have established certain relations be-

tween the roots and the coefficients of quadratic equations. We
shall now investigate similar relations which hold in the case of

equations of the nth degree, and we shall then discuss some of the

more elementary properties in the general theory of equations.

535. Let 2? x" + 2)
1
x"~

1

+

2

)
2
X
"~ 2

+ +Pn-ix+Pn ^e a rational

integral function of x of n dimensions, and let us denote it by

f(x); theny (a?) = is the general type of a rational integral equa-

tion of the nth degree. Dividing throughout by^> , we see that

without any loss of generality we may take

xn
+2)

i

x"~
1

+2,o^"~
2
+ + 2:>

n-ix
'
]-2)

n
= Q

as the type of a rational integral equation of any degree.

Unless otherwise stated the coefficients £>, ,
^> , . . . pn

will always
be supposed rational.

536. Any value of x which makes f(x) vanish is called a
root of the equation f(x) = 0.

In Art. 514 it was proved that when f(x) is divided by
x-a, the remainder is f(a) ; hence if f (x) is divisible by x — a
without remainder, a is a root of the equation f{x) = 0.

537. We shall assume that every equation of the form f(x) =
has a root, real or imaginary. The proof of this proposition will

be found in treatises on the Theory of Equations ; it is beyond
the range of the present work.

29—2
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538. Every equation of the nth degree has n roots, and no more.

Denote the given equation by/(a;) = 0, where

f(x) =pQ
«? +PJXT

1

+2> 2
xn ~°' + + P*'

The equation f(x) = has a root, real or imaginary; let this be

denoted by a,; then/(a) is divisible by x-a
} ,

so that

f(x) = (x-a
i )<f> l

(x),

where <t> (x) is a rational integral function of n-1 dimensions

Igain, the equation *»= has a root real or "0^^**
this be denoted by a

2
; then <£» is divisible by x-a2 ,

so that

fa^^ix-aj^x),

where
<f>a

(x) is a rational integral function of n - 2 dimensions.

Thus /(a>) = (« ~ «,) (* -O *b(*>

Proceeding in this way, we obtain, as in Art. 309,

/(«) = PoO* ~ °i) (
a " ^) (* - a-)*

Hence the equation f(x)= has n roots, since f(x) vanishes

when sc has any of the values a
x

,
a

2 ,
a

3
,...a

n
.

Also the equation cannot have more than n roots; for if x has

any value different from any of the quantities a xi
a

2 ,
a ...«„, all

the factors on the right are different from zero, and therefore

f(x) cannot vanish for that value of x.

In the above investigation some of the quantities a
l

,a
2
,a

3
,...a

n
j

may be equal; in this case, however, we shall suppose that the

equation has still n roots, although these are not all different.

539. To investigate the relations between the roots and the
J

coefficients in any equation.

Let us denote the equation by

xn +p
1

xn- l

+2>2
x

n~2 + +Pn-lX + P»= >

j

and the roots by a, b, c, k; then we have identically

x"+p
1
xn- l

+2) x
n~'+ +Pn-ix+P»

= (x-a) (x-b)(x-c) (x-k)'}

hence, with the notation of Art. 163, we have

xn +p
l
xH

~ l +pa
xn-* + +Pn.^+Pm

- wT - S
x
xn~ l + S

s
x*~* - + (- iy-%-^ + (" !)"£,
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Equating coefficients of like powers of x in this identity,

- %>
x

— S
l

~ sum of the roots

;

pa
= S„ = sum of the products of the roots taken two at a

time;

—pB
—S

a
-sum of the products of the roots taken three at a

time
;

(— \)*p **S
U
= product of the roots.

If the coefficient of x" is poi
then on dividing each term by

]?ui the equation becomes

aj" + ;-1 xn - l + ]-^x"- 2 + + P»=1 X + P»=
Po Po Pu Po

and, with the notation of Art. 521, we have

&= -&, 2aft=&, %abe = -%>.
, abc...k = (- 1)"^ .

Po V, P Po

Example 1. Solve the equations

x + ay + a2z = a3
1 x + by + b2z = b*, x + cy + c2z = c*.

From these equations we see that a, &, e are the values of t which
satisfy the cubic equation

t
3 -zt2 -yt-x= 0;

hence z = a + b + c, y= -(bc + ca + ab), x = abc.

Example 2. If a, b, c are the roots of the equation x3+p1x
3 +-PzC+pa=0,

form the equation whose roots are a2
, 62 , c2.

The required equation is (y - a2
) (y - b2

) (y - c2)=0,

or (x2 - a2
) (a;

2 - 62) (x2 - c 2
) = 0, if y = x2

;

that is, (x - a) (x - b) (x - c) (x + a) (x + b) (x + c) = 0.

But (x - a) (x - b) (x - c) = x3 +p 1
x2 +p2

x +pt ;

hence {x + a)(x + b) (x + c) = x3 -p x
x2 +p.& -pv

Thus the required equation is

(x3 +p1
x'

z +p2x +p3) (x3 -p
x
x2 +p*x -p 3)

= 0,

or (x3 +p&)2 - (pxx
2 +p3)

2= 0,

or x6 + (2ft
- j^

2
) x4 + (p.

2 - 2p1p.i ) x2 - p.
2= ;

and if we replace x2 by y, we obtain

f + (2p,-p 2
) y

2 + (p.? - 2pdh) y -p :

2=0.
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540. The student might suppose that the relations established

in the preceding article would enable him to solve any proposed

equation; for the number of the relations is equal to the number

of the roots. A little reflection will shew that is this not the

case • for suppose we eliminate any n - 1 of the quantities

a, b,c,...k and so obtain an equation to determine the remaining

one; then since these quantities are involved symmetrically in

each of the equations, it is clear that we shall always obtain an

equation having the same coefficients; this equation is therefore

the original equation with some one of the roots a, b, c,...k sub-

stituted for x.

Let us take for example the equation

x3 +p x
x2 + p2

x + p 3
= ;

and let a, b, c be the roots; then

a + b + c = —]:>

x
>

ab + ac + bc= ps)

abc= — p3
.

Multiply these equations by a2
,
- a, I respectively and add ; thus

rf = -l\rf-l\u>-p3i

that is, a3 +p x
a? + p2

a + p3
= 0,

which is the original equation with a in the place of x.

The above process of elimination is quite general, and is

applicable to equations of any degree.

541. If two or more of the roots of an equation are con-

nected by an assigned relation, the properties proved in Art. 539
will sometimes enable us to obtain the complete solution.

Example 1. Solve the equation 4.r3 - 24a;2 + 23x + 18= 0, having given

that the roots are in arithmetical progression.

Denote the roots by a - b, a, a + b ; then the sum of the roots is 3a ; the
sum of the products of the roots two at a time is 3a2 - 62 ; and the product
of the roots is a (a2 - 62) ; hence we have the equations

3a= 6, 3a2 -Z>2=^, a(a2 -62)=-|;

5
from the first equation we find a= 2, and from the second 6=±-, and

a
since these values satisfy the third, the three equations are consistent.

1 9
Thus the roots are - - , 2, -

.

2 £
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Example 2. Solve the equation 24a;3 - 14.r2 - (ftx + 45 = 0, one root being

double another.

Denote the roots by a, 2a, b\ then we have

Sa + b= ^, 2a2 + 3a&=--^, 2a-6=-^.

From the first two equations, we obtain

8a2 -2a-3 = 0;

3 1 , , 5 25
.-. a =-or--and&=--or-.

1 25
It will be found on trial that the values a= --, 6=^ do not satisfy

15
the third equation 2a26= ~ —- ; hence we are restricted to the values

o

3 5
a= -
v b=--.

Thus the roots are 7 , ~ >
-
o •

542. Although we may not be able to find the roots of an
equation, we can make use of the relations proved in Art. 539
to determine the values of symmetrical functions of the roots.

Example 1. Find the sum of the squares and of the cubes of the roots

of the equation x3 -px2+ qx-r — 0.

Denote the roots by a, b, c ; then

a + b + c=p, bc + ca + ab = q.

Now a2 + b2+ c2= (a + b+ c)
2 - 2 (bc + ca + ab)

—p2 - 2q.

Again, substitute «, b, c for x in the given equation and add; thus

a3 + b3 + <?-p{a2+ b2+ c
2
) + q{a + b + c)-Sr= 0;

.-. a3 + b3 + c3=p(p2 -2q) -pq + Sr

=p3 - Spq 4- dr.

Example 2. If a, 6, c, d are the roots of

xA +px*+ qx2 + rx + s = 0,

find the value of Ha2
b.

We have a+ b + c + d = -

p

(1),

ab + ac + ad+ bc + bd + cd= q (2),

abc + abd + acd + bcd— -r (3).
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From these equations we have

-pq = Sa26 + 3 (dbc + aid + acd + bed)

= Sa26-3r;

.-. 2a-b = 3r-pq.

EXAMPLES. XXXV. a.

Form the equation whose roots are

1. |, |, ±V& 2. 0, 0, 2, 2, -3, -3.

3. 2, 2, -2, -2, 0, 5. 4. a+ b, a-b, -a + b, -a-b.

Solve the equations

:

5. a? -16x3+ 86x2 - 1 76# + 105 = 0, two roots being 1 and 7.

6. 4r3+ 16.r2 - 9x - 36 = 0, the sum of two of the roots being zero.

7. 4^+ 2(Xr2 - 23.r+ 6 = 0, two of the roots being equal.

8. Sx3 — 26x2+ 52.27 — 24 = 0, the roots being in geometrical pro-

gression.

9. 2a? —

x

2 — 22#- 24= 0, two of the roots being in the ratio of

3: 4.

10. 24x*+ 46.2?2+ 9# — 9= 0, one root being double another of the
roots.

11. &r4 - 2^ -27^,2+ 6#+ 9 = 0, two of the roots being equal but
opposite in sign.

12. 54^ -39^2 -26^7+ 16= 0, the roots being in geometrical pro-
gression.

13. 32^3-48^2+22^-3 = 0, the roots being in arithmetical pro-
gression.

14. 6#* - 29^+ 40a3 - 1x-12 = 0, the product of two of the roots
being 2.

15. #* - 2x* -21.r2+ 22.27 + 40= 0, the roots being in arithmetical
progression.

16. 27.27
4 -195.273 + 494.r2 - 520.27+ 192 = 0, the roots being in geo-

metrical progression.

17. 18a3 + 8U2+ 121.37 + 60= 0, one root being half the sum of the
other two,
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18. If a, b, c are the roots of the equation Xs -paP+qx - r= 0, find

the value of

(1) ^+1 + 1- (2) i + i,+a2 ' 62 c2
' w W r

c2rt2
t
aaja

19. If a, £>, c are the roots of .r
3 + g'.r+ r=0, find the value of

(1) {h-cy+ (c-a)*+ (a-b)\ (2) (& + c)-i+ (
c+ «)-i + (

a+ ?,)-i.

20. Find the sum of the squares and of the cubes of the roots of

#* + qx2+ rx+ s= 0.

21. Find the sum of the fourth powers of the roots of

x3+qx+r=Q.

543. 7?i an equation with real coefficients imaginary roots

occur in pairs.

Suppose that f(x) = is an equation with real coefficients,

and suppose that it has an imaginary root a + ib ; we shall shew
that a — ib is also a root.

The factor of f(x) corresponding to these two roots is

(x — a — ib) (x — a + ib), or (x — a)
2 + b

2
.

Let f(x) be divided by (x — a)
2 + b

2
; denote the quotient by

Q, and the remainder, if any, by Rx +E ',
then

f(x) = Q{(x- a)
2 + b

2

} + Rx + E.

In this identity put x = a + ib, then f(x) — by hypothesis ; also

(x - a)
2 + b

2 = ; hence R (a + ib) +E = 0.

Equating to zero the real and imaginary parts,

Ra + E=Q, Rb = 0;

and b by hypothesis is not zero,

.-. R = and # = 0.

Hencef(x) is exactly divisible by (x — a)
2 + b

2

, that is, by

(x — a - ib) (x — a + ib)
\

hence x = a-ib is also a root.

544. In the preceding article we have seen that if the equa-

tionf{x) = has a pair of imaginary roots a ± ib, then (x — a)
2 + b

2

is a factor of the expression f(x).
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Suppose that a±ib, c±id, e±ig,... are the imaginary roots

of the equation f(x) - 0, and that cf> (x) is the product of the

quadratic factors corresponding to these imaginary roots; then

<j>(x) = {(x-a)2 + b
2}{(x-c) 2 + d2}{(x-e) 2 + /}....

Now each of these factors is positive for every real value of x;

hence
<f>

(x) is always positive for real values of x.

545. As in Art. 543 we may shew that in an equation with

rational coefficients, surd roots enter in pairs; that is, if a + Jb is

a root then a- Jb is also a root.

Example 1. Solve the equation 6z4 - 13x3 - 35z2 - x + 3 = 0, having given

that one root is 2 - ^3.

Since 2-^/3 is a root, we know that 2+^/3 is also a root, and corre-

sponding to this pair of roots we have the quadratic factor x2 - 4# + 1.

Also 6z4 - 13z3 - 35a:2 - x + 3 = {x2 - 4x + 1) (6a;2+ 11* + 3)

;

hence the other roots are obtained from

6a;
2+ 11a; + 3= 0, or (3a; + 1) (2z+ 3)=0;

1 3
thus the roots are - - , - - , 2 + ^/3, 2-^3.

Example 2. Form the equation of the fourth degree with rational

coefficients, one of whose roots is ,J2 + sj - 3.

Here we must have /J2 + /J-3, J2-J- 3 as one pair of roots, and
- >/2 + ^/ - 3, - J2 - J - 3 as another pair.

Corresponding to the first pair we have the quadratic factor x2 - 2
/v
/2x + 5,

and corresponding to the second pair we have the quadratic factor

x2 + 2 fJ2x + 5.

Thus the required equation is

(x2+ 2,J2x + 5) (x2 -2 fJ2x + 5) = 0,

or (x2 + 5)
2 -8a2= 0,

or a^ + 2x2 + 25 = 0.

Example 3. Shew that the equation

A2 B2 C2 H2
,+ 7 + + ... + — ,=&,x-a x-b x-c ' x-h

has no imaginary roots.

If possible let p + iq be a root ; then p - iq is also a root. Substitute
these values for x and subtract the first result from the second ; thus

{(p-a

A 2 B2 C2 H*
i)
2+ q

2 (p-b) 2 + q
2 ^(p-c) 2 + q

2 '
""

' (p-h)2 + q

which is impossible unless q =
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546. To determine the nature of some of the roots of an
equation it is not always necessary to solve it ; for instance, the
truth of the following statements will be readily admitted.

(i) If the coefficients are all positive, the equation has no
positive root ; thus the equation #5 + x3 + 2x + 1 = cannot have a
positive root.

(ii) If the coefficients of the even powers of x are all of one
sign, and the coefficients of the odd powers are all of the contrary
sign, the equation has no negative root; thus the equation

x7 + x5 - 2x4 + x3 - 3x3 + 7x- 5 =0

cannot have a negative root.

(iii) If the equation contains only even powers of x and the
coefficients are all of the same sign, the equation has no real

root ; thus the equation 2x8 + 3x* + x2 + 7 = cannot have a real

root.

(iv) If the equation contains only odd powers of x, and the
coefficients are all of the same sign, the equation has no real root

except x = ; thus the equation x9 + 2x5 + 3x3 + x = has no real

root except x = 0.

All the foregoing results are included in the theorem of the
next article, which is known as Descartes' Rule of Signs.

547. An equation f(x) = cannot have more positive roots

than there are changes of sign in f (x), and cannot have more
negative roots than there are changes of sign in f (-x).

Suppose that the signs of the terms in a polynomial are
+ H 1 1 1— ; we shall shew that if this polynomial
is multiplied by a binomial whose signs are A— , there will be at

least one more change of sign in the product than in the original

polynomial.

Writing down only the signs of the terms in the multiplica-

tion, we have

+
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Hence we see that in the product

(i) an ambiguity replaces each continuation of sign in the

original polynomial;

(ii) the signs before and after an ambiguity or set of am-

biguities are unlike;

(iii) a change of sign is introduced at the end.

Let us take the most unfavourable case and suppose that all

the ambiguities are replaced by continuations; from (ii) we see

that the number of changes of sign will be the same whether we
take the upper or the lower signs; let us take the upper; thus

the number of changes of sign cannot be less than in

+ + + + - + -+,

and this series of signs is the same as in the original polynomial

with an additional change of sign at the end.

If then we suppose the factors corresponding to the negative

and imaginary roots to be already multiplied together, each factor

x — a corresponding to a positive root introduces at least one

change of sign; therefore no equation can have more positive

roots than it has changes of sign.

Again, the roots of the equationf(—x) = are equal to those

of /(^) = but opposite to them in sign; therefore the negative

roots of f(x)-0 are the positive roots of /*(-#) = 0; but the

number of these positive roots cannot exceed the number of

changes of sign in f{— x) ; that is, the number of negative roots

of f(x) = cannot exceed the number of changes of sign in

/(- >
Example. Consider the equation a;

9 + 5x8 - x* + Ix+ 2= 0.

Here there are two changes of sign, therefore there are at most two
positive roots.

Again /(- x)= — x9+ 5x8 + x3 -7x + 2, and here there are three changes
of sign, therefore the given equation has at most three negative roots, and
therefore it must have at least four imaginary roots.

EXAMPLES. XXXV. b.

Solve the equations

:

1. 3xA — lO.'o"
3+ 4x2 - a — 6 = 0, one root being ^ .

2. 6s4 - l&e3 - 35#2 - x+ 3 = 0, one root being 2 - N/3.

3. xA+ 4-r3+ 5x2+ %x -2 = 0, one root being - 1 + ,J
^1

.
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4. X* + 4./,-" + G.f2 + 4x+ 5= 0, one root being «/-l.

5. Solve the equation x5 -xA + 8x2 -9x — 15 = 0, one root being

^3 and another 1 —2J- 1.

Form the equation of lowest dimensions with rational coefficients,

one of whose roots is

6. siZ+J^2. 7. -J^l+J5.

8. -J2-J^2. 9. N/5 + 2 x/6.

10. Form the equation whose roots are ± 4 a/3, 5 =l 2 */ - 1.

11. Form the equation whose roots are 1± >/- 2, 2± J -3.

12. Fomi the equation of the eighth degree with rational co-

efficients one of whose roots is »J2 + J3 + x/ — 1.

13. Find the nature of the roots of the equation

3xi+ l2x2+ bx-4= 0.

14. Shew that the equation 2.v7 - xA + 4.V3 - 5 = has at least four

imaginary roots.

15. What may be inferred respecting the roots of the equation

a-
10 -4a6+ xA -2.y-3=0?

16. Find the least possible number of imaginary roots of the

equation x° — o?>+ xA+ x2+ 1 = 0.

17. Find the condition that x3 -px2 + qx - r= may have

(1) two roots equal but of opposite sign

;

(2) the roots in geometrical progression.

18. If the roots of the equation xl +p.v3 -\-qx2 + rx + s= are in

arithmetical progression, shew that p3 — 4pq+ 8r=0; and if they arc

in geometrical progression, shew that p2s= r2
.

19. If the roots of the equation xn - 1 = are 1, a, /3, y, . . ., shew that

(l-a)(l-/3)(l- 7 )
=n.

If a, b, c are the roots of the equation x3 -px2 + qx -r= 0, find the

value of

20. Za2b2 . 21. (b+ c)(c+ a)(a+ b).

22. S (* + !)• 23. $a2b.

If a, b, c, d are the roots of xA+px3 + qx- + rx+ s = 0, find the value of

24. %a*b& 25. $a\
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548. To find the value of f (x + h), when f (x) is a rationed

integralJunction ofx.

Let f(x) =pQ
xn +p l

xn ~ l

+P2
X
"~ 2 + +Pn-ix + Pn i

then

fix + h) = p (x + h)
n
+2\ (x + h)

H~ }

+2>2
(x + h)"-* +

+2\-Ax + h
)
+ Pn I

Expanding each term and arranging the result in ascending

powers of h, we have

Pox
n
-\-2\x

n ~ l +2^xn ~ 2 + ... +pn. l
x+p

n

+ h {np^- 1 + (n- ljjyrf-
1 + (n-2) p2

xn ~3 + ...+ p^}

+ ^{n(n-l)p x"-
2 + (n-l)(n-2) Plx'>-

3 +... + 2pn_ 2 }

+ .

+ ^{n(n-l)(n-2)...2.12> }-

\n l

This result is usually written in the form

/(» + *)=/(*) + hf{x) + *J/» + *j/-» + ... + *i/»,

and the functions f (x), f"(x), f"(x),... are called the first,

second, third,... derivedfunctions oifix).

The student who knows the elements of the Differential Cal-

culus will see that the above expansion of f(x + h) is only a

particular case of Taylor's Theorem; the functions f (x), f" (x),

f'"{x) may therefore be written down at once by the ordinary

rules for differentiation: thus to obtain f'(x) £romf(x) we multiply

each term in f(x) by the index of x in that term and then
diminish the index by unity.

Similarly by successive differentiations we obtain fix),
J \X), ....

By writing — h in the place of h, we have

f(x-h)=f(x)-h/'(x) +
h
'f" (x)Jff'"(x)+ ... +

{
- I)- %-f{x).

The function f(x + h) is evidently symmetrical with respect

to x and h; hence
i

,n

fix + h) =/(h) + xf (h)
+*r (h) + ... 4 f/* (h).

£ \n
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Here the expressions f'(h) i f"{Ji),f
,

"{1b)
i
... denote the results

obtained by writing h in the place of x in the successive derived

functions f'(x), /"(#), f"(x),....

Example. If / {x) = 2x* - xs - 2xz + 5x - 1 , find the value of / (x + 3).

Here / (x) = 2x* - x* - 2x* + 5x - 1, so that / (3) = 131

;

/' (x) = 8z3 - Sx°- - 4x + 5, ana /' (3) = 182

;

^-)=12a»-3aj-2, and -^ = 97;

QS-te-1, and /-^3) = 23;

ii

Thus / (x + 3) = 2s4 + 23r* + 97x2 + 182* + 131

.

The calculation may, however, be effected more systematically by Horner's
process, as explained in the next article.

549. Let f{x) =p xn +p
1
xn~ 1 + p2

x"~
2 + ... +pn_ l

x + pn ;

put x — y + h, and suppose thatf [x) then becomes

Now y = x — h; hence we have the identity

p x" +p
1
xn~ l + p2

xn~2
+... +pn_ 1

x + pn

= qo
(x- h)

n +q
x
(x- h)- 1 + . . . + qn _ x

(x - h) + qn ;

therefore qn
is the remainder found by dividing f(x) by x-h;

also the quotient arising from the division is

q (x-h)*-l +ql
{x-hy-'+...+q

H_ i
.

Similarly qn _ l
is the remainder found by dividing the last

expression by x- h, and the quotient arising from the division is

9o(x
- hT'

2

+ QAx - hT~
3 + - + Qn- 2

'

}

and so on. Thus qn , qn _ 1 , qn_a , ••• may be found by the rule ex-

plained in Art. 515. The last quotient is q , and is obviously
equal to j) -
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Example. Find the result of changing x into x + 3 in the expression

2a;4_^_2x2 +5x-l.

Or more briefly thus

:

Here we divide successively by x - 3.

2-1-2 5 -1
6 15 39 132
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intermediate values; but since f(a) and f(b) have contrary signs

the value zero must lie between them; that is, f(x) = for some
value of x between a and b.

It does not follow that f(x) = has only one root between a
and b; neither does it follow that if f(a) and /(b) have the same
signf(x) = has no root between a and b.

553. Every equation of an odd degree has at least one real

root whose sign is opposite to that of its last term.

In the function f(x) substitute for x the values + co
, 0, -co

successively, then

/(+ oo) = + co, f(0)=pnJ /(-oo) = -oo.

If pn
is positive, then f(x) = has a root lying between and

— oo , and if p n
is negative f(x) = has a root lying between

and + co .

554. Every equation which is of an even degree and has its

last term negative has at least two real roots, one positive and one

negative.

For in this case

/(+co) = +co, f(0)=pn , f(-co) = + co;

but pn
is negative; hence f(x) = has a root lying between

and + co , and a root lying between and - co .

555. If the expressions f (a) and f (b) have contrary signs,

an odd number of roots of f (x) = will lie between a and b; and
«/*f(a) andi(h) have the same sign, either no root or an even number

of roots will lie between a and b.

Suppose that a is greater than b, and that a, /3, y, . . . k

represent all the roots of f(x) = which lie between a and b.

Let
<f>

(x) be the quotient when f(x) is divided by the product
(x — a) (x — /3) (x — y) ... (x — k

) ; then

f(x) — (x — a)(x—/3)(x- y) ... (x — k ) <£ (x).

Hence f(a) = (a — a) (a — /3) (a — y) ... (a - k) </> («)•

/(8)=(5-a)(6-
J
3)(6- r)...(ft-K)*(5).

Now <{>(a) and <f>(b) must be of the same sign, for otherwise a

root of the equation <j£>(.x') = 0, and therefore of f (x) = 0, would
lie between a and b [Art. 552], which is contrary to the hypo-

H. H. A. 30
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thesis. Hence if /(a) and /(b) have contrary signs, the ex

pressions

(a - a) (a -fi)(a-y) ... (a - k),

(b-a)(b-P)(b-y)...(b- K
)

must have contrary signs. Also the factors in the first expression

are all positive, and the factors in the second are all negative;

hence the number of factors must be odd, that is the number of

roots a, /?, y, ... k must be odd.

Similarly if /(a) and /(b) have the same sign the number of

factors must be even. In this case the given condition is satisfied

if a, /?, y, . . . k are all greater than a, or less than b ; thus it does

not necessarily follow that y* (as) = has a root between a and b.

556. If a, b, c, ...k are the roots of the equation /(x) = 0, then

/(x) = j? (x — a)(x-b)(x — c) ... (x — k).

Here the quantities a, b, c, ... k are not necessarily unequal.

If r of them are equal to a, s to b, t to c, . .
.

, then

/(x) =p (x — a)
r
(x - b)

s
(x — c)'

In this case it is convenient still to speak of the equation

/{x) — as having n roots, each of the equal roots being considered

a distinct root.

557. 1/ the equation f(x) = has r roots equal to a, then the
j

equation f (x) = will have r — 1 roots equal to a.

Let <£(#) be the quotient when /(x) is divided by (x — a)
r

;

then /(x) = (x — a)
r
$>{x).

Write x + h in the place of x; thus

/(x + h) = (x-a + h)
r
4>(x+ h)

;

.-../(») + ¥'(x) + %/"(x)+.. .

= Ux-a) r

+ r(x-a) r- x h + ...\U(x) + hcf>'(x)+~ <}>"(x)+ ...] .

In this identity, by equating the coefficients of A, we have

/'(x)=r(x - ay-'^x) + (x - a)
r$ (x).

Thus/'(aj) contains the factor x-a repeated r-\ times; that
is, the equation /' (x) = has ?• - 1 roots equal to a.
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Similarly we may shew that if the equation f (x) = has s

roots equal to b, the equation f (x) = has s — 1 roots equal to b

;

and so on.

558. From the foregoing proof we see that if f{x) contains

a factor (x — a)\ then f (x) contains a factor (x — a)*
-1

; and thus

f{x) and f'(x) have a common factor (x — a)
r~\ Therefore if

f(x) and fix) have no common factor, no factor in f(x) will be

repeated ; hence the equation f (x) = has or has not equal roots,

according as f (x) and f (x) have or have not a common factor

involving x.

559. From the preceding article it follows that in order to

obtain the equal roots of the equation f(x) = 0, we must first find

the highest common factor of f(x) and /*'(#).

Example 1. Solve the equation ar
1 - llx3+ 44ar -76x+ 48 = 0, which has

equal roots.

Here / {x) = x4 - lis3 + 44a? - 76a+ 48,

/' {x) = 4x3 - 33a2 + 88x - 76

;

and by the ordinary rule we find that the highest common faetor of f(x) and
/' (a;) is x - 2 ; hence (x - 2)

2 is a factor of f(x) ; and

/(a;) = (a:-2) 2
(a:

2 -7x+12)

= (a;-2) 2 (a;-3)(a:-4);

thus the roots are 2, 2, 3, 4.

Example 2. Find the condition that the equation aar3 + 36a;2 + 3ca; + d —
may have two roots equal.

In this case the equations f(x) = 0, and /' (x) = 0, that is

axs + Sbx2 + 3cx + d = (1),

ax2
-f 2bx + c = Q (2)

must have a common root, and the condition required will be obtained by

eliminating x between these two equations.

By combining (1) and (2), we have

bx2 + 2cx + d= (3).

From (2) and (3), we obtain

a;
2 _ x _ 1

2 (bd - c2 )
~ be-all ~ 2{ac - ft

2)

'

thus the required condition is

(6c - adf =4 (ac - b-) (bd - <-).

30—2
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560 We have seen that if the equation/^) = has r roots

equal to a, the equation /(a) = has r - 1 roots equal to a. But

r(x) is the first derived function of f (x); hence the equation

f'\x) = must have r-2 roots equal to a; similarly the equation

f>tx\ = o must have r - 3 roots equal to a; and so on. IheseL

considerations will sometimes enable us to discover the equal

roots of f(x) = with less trouble than the method ot Art. 559.

561. If a, b, c, ...k are the roots of the equation f (x) = 0, to

prove that

f(x) =M +M +M + ... +lW
k

.

v ' x-a x-b x-c x-k

We have fix) = (x- a) (x -b) (x-c) ... (x-k);

writing x + h in the place of x,

f (x + h) = (x - a + h)(x - b 4- h)(x- c + h) ... (x-k + h) ... (1).

But f(x + h ) =/(«) .+ hf (x) + r^ /" (»)+... ',

hence f(x) is equal to the coefficient of h in the right-hand

member of (1); therefore, as in Art. 163,

f(x)= (x-b) (x-c) ... (x-k) + (x -a)(x- c) ... (x-k)+ ...;

, • *,, n Ax
) Ax

) Ax
) f(x)

that is, f'(x) =
J^^- +^-{ + ^- J + ... + -/^/

.w x — a x-b x — c x — k

562. The result of the preceding article enables us very easily
'"

to find the sum of an assigned power of the roots of an equation.

Example. If Sk denote the sum of the fc
th powers of the roots of the

equation x5 +px* + qx2 + t= 0,

find the value of S4 , S6 and S_4.

Let f(x)=x5 +pxli+ qx* + t',

then /'
(
x) = 5x* + 4ps3+ 2qx.

fix)Now Z^=rf+(a+P)x3 + (a2 + ap)x2 +(a* + a2p + q)x + a4 + a?p + aq-,
so a

and similar expressions hold for

/(*) fw />) /w
x-b' x-c' x-d' x-e'
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Hence by addition,

5ar*+ 4px* + 2qx =5x* + (S
t + 5p)x? + (S2+pSJ x2

+ {Si +pS2 + 5q) x + {S4 +p83 + qSJ.
By equating coefficients,

S
1 + 5p = ±p, whence 8X

.— - p ;

S2+pSl
= 0, whence S2=pz

;

S3
+pS2 + oq = 2q, whence S3

= -

p

% -Sq;

S
4
+pS

3 + qSx
= 0, whence S4=pi + 4j)q.

To find the value of Sk for other values of k, we proceed as follows.

Multiplying the given equation by #*~5
,

x* +pxk~1 + qx*~3 + to*
-5 = 0.

Substituting for x in succession the values a, b, c, d, e and adding the
results, we obtain Sk +pSk_x + qSk_3 + tSk_5

= 0.

Put k = 5 ; thus S5 +pS4 + qS2+ 5t= 0,

whence S5
= -p5 - op2

q - bt.

Put k = 6 ; thus S6 +pS5 + qS3 + tSx
= 0,

whence S
6=p6 + 6p'*q + Sq2 + bpt.

To find 5_4 ,
put k= 4, 3, 2, 1 in succession; then

Si+pS3+ qS
1 + *#_! = (), whence S_x

= 0;

2,/
S3+pS2 + 5q + tS_2

= 0, whence S_.2= - —
;

S.2+pS1 + qS-
1 + tS_3= 0, whence S_3

= 0;

S1 + 5p + qS_2+ tS_
4
= 0, whence £_4

=% -
Ap

.

563. When the coefficients are numerical we may also pro-

ceed as in the following example. -

Example. Find the sum of the fourth powers of the roots of

x*-2x2 + x-l = 0.

Here f(x) = x*-2x2 + x-l,

f'(x) = Sx2 -±x + l.

Also * / -.-' = + +
f(x) x- a x—b x-c

/l a a2 a3 \= 2 - +_+- + —+...
\x x- Xs x* J

O i>, Oo o«
=-+— H + " +
X X~ X3 X*
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hence #4 is equal to the coefficient of ^ in the quotient of f'{x) by f(x),

which is very conveniently obtained by the method of synthetic division as

follows

:

1

2
-1

1

3-4 + 1

6-3 + 3
4-2 + 2

4- 2 + 2

10-5 + 5

3 + 2 + 2 + 5 + 10 +

3 2 2 5 10
Hence the quotient is - + -2 + -3 + -4 + -g +

thus S. = 10.

EXAMPLES. XXXV. c.

1. If f{x) = xA + 10^+ 39#2+ 76o;+ 65, find the value off(x - 4).

2. If f(x)=xi - I2x3+ 11x2 -9x+ 1, find the value of/(#+ 3).

3. If /(#) = 2#4 - 13#2 + 10a; - 19, find the value off(x+ 1).

4. If f(x) =x* + 16^ + 12x2+ 64a; - 129, find the value off(x - 4).

5. If f(x)= ax9+ bx5 + ex+ c£, find the value of/(# + /i) —f(co - It).

6. Shew that the equation 10a*3 - 17#2 +#+6=0 has a root
between and - 1.

7. Shew that the equation x* - 5x3+ Sx2+ 35# - 70= has a root
between 2 and 3 and one between - 2 and - 3.

8. Shew that the equation x* - l<2x2 + I2x - 3 =0 has a root
between - 3 and - 4 and another between 2 and 3.

9. Shew that x5 + 5x* - 20x2 - 19a; - 2 = has a root between 2 and
3, and a root between - 4 and - 5.

Solve the following equations which have equal roots

:

10. a;
4 -9a;2+ 4a;+12 = 0. 11. ^-6^+ 12^_ 1007+ 3= 0.

12. a,-
5 - 13#*+67#3 - 17la;2+ 216^- 108=0.

13. x5 -x3+ 4x2 -3x + 2 = 0. 14. 8^+4^3-18^+11^-2=0.
15. xG -3x5 + 6x3 -3x2 -3x+ 2= 0.

16. x6 - 2x* - 4xA + 12a,*3 - Sx2 - 18a;+ 18= 0.

17. xi -(a+ b)x*-a(a-b)x2+ ai(a+ b)x-a3b= Q.
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Find the solutions of the following equations which have common
roots

:

18. 2s* - 2a-3+ x2+ 3x-6 = 0, 4#* - 2s3+ 3x -9 = 0.

19. 4#*+

1

2x* - #2 -15.*;= 0, 6^4+ 1 3a;3 - 4a;2 - 1 bx= 0.

20. Find the condition that x1l -px2+r=0 may have equal roots.

21. Shew that xi+ qx2+ s = cannot have three equal roots.

22. Find the ratio of b to a in order that the equations

ax2+ bx+ a= and xs -2x2+ 2x-l =0
may have (1) one, (2) two roots in common.

23. Shew that the equation

xn+ nxn ~ 1 + n (n - 1) xn ~ 2+ ... + \n=

cannot have equal roots.

24. If the equation x5 - l0a3x2+ bix+ c5= Q has three equal roots,

shew that ab* - 9a5+ c5= 0.

25. If the equation xA+ ax3+ bx2+ cx+d=0 has three equal roots,

shew that each of them is equal to —^—^r .

26. If x5 -hqx3 + rx2+ t= has two equal roots, prove that one of

them will be a root of the quadratic

15rx2 - 6q2x+ 25* - 4qr = 0.

27. In the equation x3 - x - 1 =0, find the value of S
6

.

28. In the equation xi - x3 -1x2 + x + 6= 0, find the values of £4

and S
6

.

Transformation of Equations.

564. The discussion of an equation is sometimes simplified

by transforming it into another equation whose roots bear some

assigned relation to those of the one proposed. Such transforma-

tions are especially useful in the solution of cubic equations.

565. To transform an equation into another ivhose roots are

those of the proposed equation with contrary signs.

Let f(x) = be the proposed equation.

Put -y for x; then the equation f(—y) - is satisfied by
every root of f(x) - with its sign changed ; thus the required

equation is f(—y) = 0.



472 HIGHER ALGEBRA.

If the proposed equation is

then it is evident that the required equation will be

p y
n -py~ l

+ p2f~
2 - + (- ir x

A-,y + (- W. = o,

which is obtained from the original equation by changing the

sign of every alternate term beginning with the second.

566. To transform an equation into another whose roots are

equal to those of the proposed equation multiplied by a given

quantity.

Let f{x) = be the proposed equation, and let q denote the

given quantity. Put y — qx, so that x — -
, then the required

equation is f ( -
J
= 0.

The chief use of this transformation is to clear an equation of

fractional coefficients.

Example. Remove fractional coefficients from the equation

*»-•*-* .+1-0.

Put x= - and multiply each term by q
3

; thus

3 13
By putting q = 4 all the terms become integral, and on dividing by 2,

we obtain

y
s -Sy2 -y + Q= 0.

567. To transform an equation into another whose roots are

the reciprocals of the roots of the proposed equation.

Let f(x) = be the proposed equation
;
put y = -

, so that

X —
y
-

; then the required equation isy( -
)
= 0.

One of the chief uses of this transformation is to obtain the

values of expressions which involve symmetrical functions of

negative powers of the roots.
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Example 1. If a, b, c are the roots of the equation

Xs -px2 + qx — r= 0,

find the value of - + r., + -s .

a2 b- c-

Write - for x, multiply by y'\ and change all the signs; then the re-

y
suiting equation ry 9 - qy

2 +py -1 = 0,

has for its roots
111
a' b' c

''

hence 2- = ^, S-= =-:
a r ab r

1 q
2 - 2prV

a2 r-

Example 2. If a, b, c are the roots of

«3 + 2x2 -3x-l = 0,

find the value of a-3 + b~3 + c~3
.

Writing - for x, the transformed equation is

y*+ Sy2 -2y-l = 0;

and the given expression is equal to the value of S
s
in this equation.

Here S1= -3;

£2=(-3)
2 -2(-2) = 13;

and S3 + 3S.2 -2S1
-3= 0;

whence we obtain S,= -42.

1
568. If an equation is unaltered by changing x into —

, it

is called a reciprocal equation.

If the given equation is

xn
+ Plx

n- l +p2
x"-

2 + + 1
->

n _ 2
xi

+Pn_ iX +^=0,

the equation obtained by writing - for x, and clearing of fractions

is

V£? + l\-p
n~ x

+ pn-X~
2 + • • • +l\n

2

+PF +1 = 0.

If these two equations are the same, we must have

Fl
p '

?'2 * '

'••' V»-*~ p ' *-»-« '
P"-p >

from the last result we have p =*fc 1, and thus we have two
classes of reciprocal equations.
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(i) If pn=l t
then

Px=Pn-^ P*=P*-» Pb=P*-B> '>

that is, the coefficients of terms equidistant from the beginning

and end are equal.

(ii) If 2>n
= ~ 1) then

p,=-ps_ 1 , p2
=-p

n - 2 , Ps=-p n - 3 , ;

hence if the equation is of 2m dimensions pm = —pmi or £>TO
=0.

In this case tlie coefficients of terms equidistant from the begin-

ning and end are equal in magnitude and opposite in sign, and
if the equation is of an even degree the middle term is wanting.

569. Suppose that f (x) = is a reciprocal equation.

If f(x) = is of the first class and of an odd degree it has a

root —1; so that f (x) is divisible by aj + 1. If <f>(x) is the

quotient, then <f>(x) =0 is a reciprocal equation of the first class

and of an even degree.

If f(x) = is of the second class and of an odd degree, it

has a root + 1 ; in this case f(x) is divisible by as— 1, and as

before <j> (x) = is a reciprocal equation of the first class and of

an even degree.

If f(x) = is of the second class and of an even degree, it

has a root + 1 and a root - 1 ; in this case f{x) is divisible by
x2 — 1, and as before <f>(x) = Q is a reciprocal equation of the first

class and of an even degree.

Hence any reciprocal equation is of an even degree with

its last term positive, or can be reduced to thisform; which may
therefore be considered as the standard form of reciprocal

equations.

570. A reciprocal equation of the standard form can be re-

duced to an equation of half its dimensions.

Let the equation be

ax2m + bx
2m- ] + cx

2m~ 2 + ... + kxm + ... + ex2 + bx + a = 0;

dividing by xm and rearranging the terms, we have

i) + 6(^' +5L) + .(.r-' +;
l,)+... + *=a.a xm +

x
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Now

*+,+^^4)K)-(*-,+^);

hence writing % for x + -
, and giving to p in succession the values

1, 2, 3,... we obtain

x2 + -2
= s* - 2,

a3 + -j = z (z
2 -2) -z = z

3 - 3z
;x

x4 + -4 = z (z
3 - 2>z) - (z

2 - 2) = z* - iz
2 + 2

;

and so on; and generally xm + — is of m dimensions in z, and

therefore the equation in z is of m dimensions.

571. To find the equation whose roots are the squares of those

of a proposed equation.

Let f(x) = be the given equation
;
putting y = x2

, we have

x— Jy\ hence the required equation isf(Jy) — 0.

Example. Find the equation whose roots are the squares of those of the

equation vP+p^+ptfc+p-^Q.

Putting x=Jy, and transposing, we have

(y+P2)Jy= -(PiU+2h)>

whence {y
2+ 2p2y +pf) y =px

hj 2 + 2pxpzy + p3
2

,

or 2/
3 + (3pa - Pl*) tf- + (i>2

2 - 2Pnh ) y-p.A
2 = 0.

Compare the solution given in Ex. 2, Art. 539.

572. To transform an equation into another whose roots

exceed those of the proposed equation by a given quantity.

Let f (x) = be the proposed equation, and let h be the given

quantity
;
put y = x + h, so that x = y — h; then the required

equation is f(y — h) — 0.

Similarly f(y + h) = is an equation whose roots are less by

h than those oif(x) = 0.
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Example. Find the equation whose roots exceed by 2 the roots of the

equation 4x*+ 32a;3 + 83a;2 + 76a; + 21 = 0.

The required equation will be obtained by substituting x - 2 for a; in the

proposed equation ; hence in Horner's process we employ x + 2 as divisor,

and the calculation is performed as follows :

4
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Sometimes it will be more convenient to proceed as in the

following example.

Example. Remove the second term from the equation

px? + qx2 + rx + s = 0.

Let a, /9, 7 be the roots, so that a + p +y= --. Then if we increase

each of the roots by £- , in the transformed equation the sum of the roots
dp

will be equal to - - + - ; that is, the coefficient of the second term will
p p

be zero.

Hence the required transformation will be effected by substituting x--~
6p

for x in the given equation.

574. From the equation f(x) = we may form an equation

whose roots are connected with those of the given equation by
some assigned relation.

Let y be a root of the required equation and let cf>(x, y) =
denote the assigned relation; then the transformed equation can

be obtained either by expressing a; as a function of y by means
of the equation <£ (x, y) = and substituting this value of x in

f(x) = §; or by eliminating x between the equations f(x) = Q

and
<f>

(x, y) = 0.

Example 1. If a, b, c are the roots of the equation x3 +p>x2 + qx + r=0,
form the equation whose roots are11 1

a - —
, b , c—r .

be ca ab

When x = a in the given equation, y=a- =- in the transformed equation
j

, , 1 a a
but a-—= a—— =a + -;

be abc r

and therefore the transformed equation will be obtained by the substitution

x ry
y = x + -

, or x = ~- ;v r 1 + r

thus the required equation is

r2y
3 +Pr{l + r)y2 + q{l + r) 2 y + (l + r)*= 0.

Example 2. Form the equation whose roots are the squares of the

differences of the roots of the cubic

x3+ qx+ r= Q.

Let a, b, c be the roots of the cubic ; then the roots of the required

equation are (b - c)
2

,
(c - a) 2

,
(a - b) 2

.



478 HIGHER ALGEBRA.

2a6c

2abc

Now (b-c)2= fc
2+ c2 -2fcc = a2 + &2 + c2 -a2 -

a

a
= (a + b + c)

2 - 2 (be + ca + ah) - a2

= -25 -a2 +^;
a

also when x= a in the given equation, y = (b-c) 2 in the transformed
equation

;

. 2r
.*. ?/ = - 2o- a;

J
H .

x

Thus we have to eliminate x between the equations

xs + qx + r=0,

and .r
3 + (2# + y) x - 2r= 0.

By subtraction (#+?/)#= 3r ; or a:= .

Substituting and reducing, we obtain

y
s + 6

(2
^2 +9^ + 27,-2 + 4^3 _ .

Cor. If a, &, c are real, (& - c) 2
,

(c - a) 2
,
(a - 6)

2 are all positive ; therefore

27r2 + 4g 3 is negative.

Hence in order that the equation xz + qx + r= may have all its roots

real 27r2 + 4<73 must be negative, that is (-) +(f) must be negative.

If 27r2 + 4# 3=0 the transformed equation has one root zero, therefore

the original equation has two equal roots.

If 27r2 + 4g3 is positive, the transformed equation has a negative root

[Art. 553], therefore the original equation must have two imaginary roots,

since it is only such a pair of roots which can produce a negative root in

the transformed equation.

EXAMPLES. XXXV. d.

1. Transform the equation x3 - 4#2+ - x — -= into another with

integral coefficients, and unity for the coefficient of the first term.

2. Transform the equation 3xA - 5x3+ x2 - x+ 1 = into another
the coefficient of whose first term is unity.

Solve the equations

:

3. 2x4+ x3 -6x2+ x+ 2 = 0.

4. ^-10^+26^-10^+1 = 0.

5. x*-5xi+ 9x3 -9x2 + 5.^-1 = 0.

6. 4#fi - 24^+ 57xA - Idx3+ 57x2 - Mx+ 4 = 0.
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7. Solve the equation 3./,-3 - 22.r2+ 48.r - 32 = 0, the roots of which
are in harmonica! progression.

8. The roots of x3 - lLr2+ 36#-36 = are in harmonica! pro-

gression ; find them.

9. If the roots of the equation x3 - ax2 +x—b=0 are in harmonica!

progression, shew that the mean root is 3b.

10. Solve the equation 4(Xr4 -22^-2Lr2+ 2.t*+l =0, the roots of

which are in harmonica! progression.

Remove the second term from the equations

:

11. a?
8- &c*+ 10a?-3=0.

12. x*+4o?+ 2a2-4#-2=0.

13. afi+ 5xA + 3X3 + x2+ x - 1 = 0.

14. afi - 12s5+ 3.v2 - 1 7.v+ 300= 0.

x 3
15. Transform the equation a^-j — 7=0 mto one whose roots

3
exceed by - the corresponding roots of the given equation.

22

16. Diminish by 3 the roots of the equation

17. Find the equation each of whose roots is greater by unity

than a root of the equation x3 - bx2+ 6x - 3= 0.

18. Find the equation whose roots are the squares of the roots of

x*+ x3 + 2x2+x+ 1= 0.

19. Form the equation whose roots are the cubes of the roots of

x3 + 3x2+ 2 = 0.

If a, b, c are the roots of x3 + qx + r-0, form the equation whose
roots are

20. ka~\ hb-\ hr\ 21. b2c\ c2a2
,
a2b2

.

b+ c c+ a a+ b , 1 1
b

1

24. «(6 + c), &(c+a), c(a + b). 25. «3
, 63

, c3 .

~ n b c c a a b
26. - + r ,

- + -, T + --
c b a c b a

27. Shew that the cubes of the roots of x3+ ax2+bx+ ab=0 are

given by the equation x3 + a3x2 + b3x + a3b3= 0.

28. Solve the equation x* - bx* - bx3+ 2bx2 + 4a - 20 = 0, whose
roots are of the form «, —a,b, — b, c.

29. If the roots of x3 + 3px2+ 3qx+ r= are in harmonica] pro-

gression, shew that 2gs=r(3pgr— r).
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Cubic Equations.

575. The general type of a cubic equation is

x3 +Px2 + Qx + fi=0,

but as explained in Art. 573 this equation can be reduced to the

simpler form x3 + qx + r = 0,

which we shall take as the standard form of a cubic equation.

576. To solve the equation x3 + qx + r = 0.

Let x = y + z ; then

x3 =y3 + z
3 + 3yz (y + z) = y

3 + z
3 + 3yzx,

and the given equation becomes

y
3 + z

3 + (3yz + q)x+r = 0.

At present y, z are any two quantities subject to the con-

dition that their sum is equal to one of the roots of the given

equation ; if we further suppose that they satisfy the equation

3yz + q = 0, they are completely determinate. We thus obtain

o
3

y
3 + z

3 =-r, y
3
z
3 = -^;

hence y
3
, z

3 are the roots of the quadratic

Solving this equation, and putting

y
z =-\ +Jr

i
+

it
»

sr ~ 2 V 4 27 ™
we obtain the value of x from the relation x = y + z; thus

1

r fr2
q
3Y f r 11

-2 + V4 +
27}

+ H-V"
r
2

q
3 ^

'

4
+

97

The above solution is generally known as Cardan's Solution,

as it was first published by him in the Ars Magna, in 1545. Cardan
obtained the solution from Tartaglia; but the solution of the

cubic seems to have been due originally to Scipio Ferreo, about
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1505. An interesting historical note on this subject will be
found at the end of Burnside and Panton's Theory of Equations.

577. By Art. 110, each of the quantities on the right-hand

side of equations (1) and (2) of the preceding article lias three

cube roots, hence it would appear that x has nine values ; this,

however, is not the case. For since yz = — ^, the cube roots are

to be taken in pairs so that the product of each pair is rational.

Hence if y, z denote the values of any pair of cube roots which
fulfil this condition, the only other admissible pairs will be

wy, ta*z and ii>

2

y, a)Z, where co, or are the imaginary cube roots of

unity. Hence the roots of the equation are

y + z, wy + w2
z, <x)

2

y + wz.

Example. Solve the equation x3 - 15.r = 126.

Put y + z for x, then

y"* + z* + {3yz-15)x = 126;

put 3f/2-15 = 0,

then y^z3= 126;

also y*zs= 125

;

hence y's
, z

:i are the roots of the equation

i
2 -126£ + 125 = 0;

.-. 2/3= 125, sfc=l;

y = 5, 2 = 1.

Thus j/ + 2 = 5 + l = 6;

u,y + u~z = ^—- 5 + - 2

= -3 + 2^/^3;

w-y + wz= - 3-2^/^3;

and the roots are 6, -3 + 2*7-3, -3-2 J -3.

578. To explain the reason why we apparently obtain nine

values for x in Art. 576, we observe that y and z are to be found

from the equations y
3 + z

3 + r = 0, yz= —\ j but in the process of
o

q
3

solution the second of these was changed into y
J
z
3 = - ^ ,

which

H.H. A. 31
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2

would also hold if yz =—~
, or yz = ^ ; hence the other six

values of x are solutions of the cubics

x3 + wqx + r — 0, x3 + ou
2
<p; + r = 0.

579. We proceed to consider more fully the roots of the

equation x3 + qx + r = 0.

2 3
v q .

(i) If -r + ~ h positive, then y
3 and z

3 are both real; let

y and # represent their arithmetical cube roots, then the roots

are y + z, wy + oy
2
z, (o

2

y + wz.

The first of these is real, and by substituting for a> and w 2 the

other two become

r
2

<7
3

.

(ii) If -j + ^=- is zero, then y
3 — z

3
\ in this case ?/ = z, and

the roots become 2y, 2/(w + co
2

), 2/(00 + to
2
), or 2y, —3/, — ?/.

r
2

<7
3

(iii) If — + ~ is negative, then ?/
3 and 2

3 are imaginary ex-

pressions of the form a + ib and a — ib. Suppose that the cube
roots of these quantities are m + in and m — in; then the roots of

the cubic become

m + in + m — in, or 2m

;

(m + m) o> + (m — in) <o
2

, or — m — w ^/3

;

(m + m) co
2 + (m — in) <o, or —m + n ^3

;

which are all real quantities. As however there is no general

arithmetical or algebraical method of finding the exact value of

the cube root of imaginary quantities [Compare Art. 89], the
solution obtained in Art. 576 is of little practical use when the

roots of the cubic are all real and unequal.

This case is sometimes called the Irreducible Case of Cardan's
solution.

580. In the irreducible case just mentioned the solution may
be completed by Trigonometry as follows. Let the solution be

1 1

x = (a + ib)
3 + (a - ib)

3

;
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put a = r cos 6, b = r sin 0, so that r
2 = a2 + b\ tan = -

then (« + ^)
3 = {r (cos + i sin 6)f.

Now by De Moivre's theorem the three values of this ex-
pression are

, ;.,: *\ J/ + 2tt . . 0+27Ar3 (^cos - + * sin -\
, H f cos l^fl + i sin

<9 + 4tt . . + 4
+ 1 sinand r3 (cos

1

where r
3
denotes the arithmetical cube root of r, and the

smallest angle found from the equation tan = -
.

a'
1

The three values of (a - ibf are obtained by changing the sign
ot 1 in the above results ; hence the roots are

2r!co8' 24cos^T, 2,icos^ti^ I
o 3

Biquadratic Equations.

581 We shall now give a brief discussion of some of the
methods which are employed to obtain the general solution of a
biquadratic equation. It will be found that in each of the
methods we have first to solve an auxiliary cubic equation ; and
thus it will be seen that as in the case of the cubic, the general
solution is not adapted for writing clown the solution of a
given numerical equation.

•

58
i

2
; J

he solution of a biquadratic equation was first ob-
tained by Ferrari, a pupil of Cardan, as follows.

Denote the equation by

x4
+ 2px3 + qx2 + 2rx + s=0;

add to each side (ax + b)
2

, the quantities a and b being determined
so as to make the left side a perfect square; then

x4

+ 2px3
+(q + a2)x2 + 2(r + ab)x + s + b

2 = (ax + b)
2
.

Suppose that the left side of the equation is equal to (rf+px+k)*-
then by comparing the coefficients, we have

p* + 2k - q + a2

,
pk = r + ab, If = s + b'

2

;

31—2
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by eliminating a and b from these equations, we obtain

(pk - r)
2 = (21c +p* - q) (k

2 - s),

or 2k3 -qk2 + 2
(
pr - s) k + p

2
s - qs - r

2 = 0.

From this cubic equation one real value of k can always be
found [Art. 553]; thus a and b are known. Also

(x
2 +px +W =

(
ax + W'>

.'. x2 +px + k = ±(ax + b);

and the values of x are to be obtained from the two quadratics

x2 + (p — a) x + (k — b) =
t

and x2 + (2) + a)x+ (k + b) = 0.

Example. Solve the equation

xi - 2.x3 - 5x- + Hh; - 3 = 0.

Add a2x2 + 2abx + b2 to each side of the equation, and assume

x* - 2x*+ (a2 - 5) x2 + 2 {ab + 5) x + 62 - 3 = (x2 - x + k) 2
•

then by equating coefficients, we have

a2 =2fc + 6, ab = -k-5, b2=k2+ 3;

.-. (2fc + 6)(fc2 + 3) = (7c + 5)
2

;

.-. 2k*+ 5k2 -M- 7 = 0.

By trial, we find that k= - 1 ; hence a2 = 4, &2 = 4, ab= - 4.

But from the assumption, it follows that

(x2 -x + k) 2=(ax + b) 2
.

Substituting the values of k
}
a and b, we have the two equations

x2 - x - 1 = ± (2x - 2)

;

that is, z2 -3.r + l = 0, and x2 +x-3 = Q;

whence the roots are —~—
, ^— .

a -

583. The following solution was given by Descartes in 1637.

Suppose that the biquadratic equation is reduced to the form

x 1 + qx2 + rx + s = ;

assume x4 + qx2 + rx + s = (x
2 + kx + 1) (x

2 - kx + m)

;
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then by equating coefficients, we have

I + vi — k2 — q, k (m — l) = r, Im = s.

From the first two of these equations, we obtain

v v
2m= AT + q + t ,

2l=k2
+ q -j;

hence substituting in the third equation,

(k
3 + qk + r) (k

3 + qk - r) = 4sk
2

,

or ¥ + 2qk4 + (q
2 - 4s) k2 - r

2 = 0.

This is a cubic in k2
wliich always has one real positive solu-

tion [Art. 553]; thus when k2
is known the values of I and m

are determined, and the solution of the biquadratic is obtained
by solving the two quadratics

x2 + kx + I = 0, and x2 — kx + m=0.

Example. Solve the equation

z4 -2a;2 + 8j;-3 = 0.

Assume x4 - 2a;2 + 8# - 3 = (x2 + kx + 1) (x
2 - kx + m)

;

then by equating coefficients, we have

l +m-k2= -2, k(m-l) = 8, lm = -Z;

whence we obtain {k3 - 2k + 8) (A;
3 - 2k - 8) = - 12& 2

,

or fc
6 -4fc4 + 16fc2 -64 = 0.

This equation is clearly satisfied when A;
2 -4= 0, or k— ±2. It will be

sufficient to consider one of the values of k
;
putting k = 2, we have

m+l= 2, 7n-l= 4] that is, l = -l, m = 3.

Thus as* - 2.r2 + 8.r - 3 = (.r
2 + 2x - 1 )

{x2 - 2x + 3) ;

hence a;
2 + 2.r-l = 0, and x--2x+ 3 =

;

and therefore the roots are - 1 ± J2, 1± J^2.

584. The general algebraical solution of equations of a
degree higher than the fourth has not been obtained, and Abel's

demonstration of the impossibility of such a solution is generally

accepted by Mathematicians. If, however, the coefficients of an
equation are numerical, the value of any real root may be found
to any required degree of accuracy by Horner's Method of ap-

proximation, a full account of which will be found in treatises on
the Theory of Equations.



486 HIGHER ALGEBRA.

585. We shall conclude with the discussion of some miscella-

neous equations.

Example 1. Solve the equations :

x + y + z+ u = 0,

ax + by +cz + du= 0,

a2x + b2y + c2z + d2u = 0,

a?x + b3
y + c3z + d3u= k.

Multiply these equations, beginning from the lowest, by 1, p, q, r re-

spectively
; p, q, r being quantities which are at present undetermined.

Assume that they are such that the coefficients of y, z, u vanish ; then

x (a3 +pa2 + qa+ r) = k,

whilst b, c, d are the roots of the equation

t
3 +pt2 + qt + r= 0.

Hence a3 +pa2 + qa + r= (a-b){a-c){a- d)
;

and therefore (a -b)(a- c) {a -d)x = h.

Thus the value x is found, and the values of y, z, u can be written down
by symmetry.

Cor. If the equations are

x + y + z + u = l,

ax + by + cz + du = I;

a 2x + b
2
y + c*-z + d2u = k2

,

a3x + bsy + c3z + dhi = A;
3

,

by proceeding as before, we have

x (a3 +pa2 + qa + r) = k3 +pk2 + qk + r;

.'. (a-b)(a-c)(a-d) x = (k- b)(k-c)(k-d).

Thus the value of x is found, and the values of y, z, u can be written
down by symmetry.

The solution of the above equations has been facilitated by the use of

Undetermined Multipliers.

Example 2. Shew that the roots of the equation

{x -a){x- b) (x - c) -f2 (x -a)-g2 (x-b)- h2 {x -c) + 2fgh=

are all real.

From the given equation, we have

{x-a){(x-b)(x-c)-f*}-{g*{x-b) + h*(x-c)-2fgh}=0.

Let p, q be the roots of the quadratic

{x-b)(x-e)-f*=0,
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and suppose ^ to be not less than q. By solving the quadratic, we have

2x = b + c±J(b-c)* + tf:i

(1);

now the value of the surd is greater than b ~ c, so that p is greater than h

or c, and q is less than b or c.

In the given equation substitute for x successively the values

+ °°» v, q>
- 30

;

the results are respectively

+ °° , -fajp^b-h Jp ~ c
)

2
> +{<J Jb-q- h Jc - q)~, - cc

,

since {p -b)(p- c) =f* = (b - q) (c - q).

Thus the given equation has three real roots, one greater than 2', one
between _p and q, and one less than q.

If p = q, then from (1) we have (6-c) 2 + 4/2= and therefore b = c,f=0.
In this case the given equation becomes

(x -b){{x- a) (x -b)-g*- lr} =0

;

thus the roots are all real.

If p is a root of the given equation, the above investigation fails ; for it

only shews that there is one root between q and + oo , namely p. But as

before, there is a second real root less than q ; bence the third root must also

be real. Similarly if q is a root of the given equation we can shew that all

the roots are real.

The equation here discussed is of considerable importance ; it occurs

frequently in Solid Geometry, and is there known as the Discriminating

Cubic.

586. The following system of equations occurs in many
branches of Applied Mathematics.

Example. Solve the equations :

x y z ,

a + \ b + \ c + \

x y z

a -\-fji. b + /j, c + fx

x y z -,— + J—+ = 1.
a+f b+ v c+v

Consider the following equation in 6,

x y z (0-X)(g-ft)(g-y)
.

a +
+

b + d
+

c + (a + e)(b + 6){c + 0y

x, y, z being for the present regarded as known quantities.
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This equation when cleared of fractions is of the second degree in 6, and
is satisfied by the three values 8=\ 6= p., d = v, in virtue of the given

equations ; hence it must be an identity. [Art. 310.]

To find the value of #, multiply up by a+0, and then put a + = 0;

thus .. - (--X)(-^)(-"-'0 .

(b - a) (c - a)

that is, .= fe+£Lfe+i4!ttd.
(a- b) (a-c)

By symmetry, we have

(b + \){b + fx)(b + v)

y=

and

{b-c)(b-a)

{c + \){c + fi)(c + v)

(c -a) (c - b)

EXAMPLES. XXXV. e.

Solve the following equations

:

1. a3 -18a= 35. 2. a?+ 7207- 1720=0.

3. a3 + 63a- 316 = 0. 4. ff
3+ 21#+ 342 = 0.

5. 28^-9^+1=0. 6. &s-15#8 -33ar+847=0.

7. 2a3+ 3a2+ 3a+ 1=0.

8. Prove that the real root of the equation a3 + 12a -12 =
is 2^/2-^4.

Solve the following equations

:

9. a4 -3a2 -42a -40= 0. 10. a4 - 10a2 - 20a- 16= 0.

11. a4+ 83?+ 9a2 -8a -10= 0.

12. a-
4+ 2a3 - 7a2 - 8a + 1 2 = 0.

13. **- 3^-6^-2=0. 14. a*-23?-12afi+10x+ 3=0.

15. 4a4 - 20a-3+ 33^2 - 20a+ 4= 0.

16. a6 -6a4 -17a3+ 17a2+ 6a-1 = 0.

17. a4 + 9a3+ 12a2 - 80a - 192= 0, which has equal roots.

18. Find the relation between q and r in order that the equation

A3+ ^A+r=0 may be put into the form a4= (a2+ «a+&) 2
.

Hence solve the equation

8a3 -36a+ 27 = 0.
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19. If jfi+3pafl+3qx+r and x*+2px+q
have a common factor, shew that

4(p2 -q) (q
2 —pr) - (pq-r)2= 0.

If they have two common factors, shew that

p2 -q=0, q
2 -pr=0.

20. If the equation axs+ 3bx2+ 3cx+ d=() has two equal roots,

shew that each of them is equal to —. rs? .1
2 (etc - b2

)

21. Shew that the equation x4+PX3 + qx2+ rx+ s = may be solved
as a quadratic if r2=p2

s.

22. Solve the equation

gfl - 1SxA+ 1 6.1*3 + 28x2 - S2x+ 8 = 0,

one of whose roots is J6 — 2.

23. If a, /3, y, 5 are the roots of the equation

xA+ qx2+ r.t- 4- s= 0,

find the equation whose roots are /3+y+ d+ (/3y§)
_1

, &c.

24. In the equation x4 —px3+ qx2 - rx+ s= 0, prove that if the sum
of two of the roots is equal to the sum of the other two p3 - 4pq + 8r= ;

and that if the product of two of the roots is equal to the product of

the other two r2=p2
s.

25. The equation x° - 209.£+ 56 = has two roots whose product is

unity : determine them.

26. Find the two roots of ^ — 409^+ 285 = whose sum is 5.

27. If a, b, c,...k are the roots of

Xn+p1
Xn~1 +p2Xn~2+ +Pn-l$ +Pn= °>

shew that

(l+a2)(l+b2
) {

l + k2
) = (l-p,+p±- ...)

2+ (Pl -p,+p,- ...)
2
.

28. The sum of two roots of the equation

.-r
4 - 8.r>+ 21^2 - 20a-+ 5 =

is 4 ; explain why on attempting to solve the equation from the kuow-
led^e of this fact the method fails.
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1. If s
l , s2i *3 are the sums of n, 2n, Sn terms respectively of an

arithmetical progression, shew that s3= 3 (s
2
— sj.

2. Find two numbers such that their difference, sum and product,

are to one another as 1, 7, 24.

3. In what scale of notation is 25 doubled by reversing the digits?

4. Solve the equations :

(1) (#+2)(#+3)(a;-4)(#-5)=44.

(2) x(y + z) + 2 = 0, y(z-2x) + 2l=Q, z(2x-y) = b.

5. In an A. P., of which a is the first term, if the sum of the

first p terms = 0, shew that the sum of the next q terms

a{p + q)q
^p—l

[R. M. A. Woolwich.]

6. Solve the equations

:

( 1

)

(a+ b) (ax+ b)(a- bx) = (a2x - b2) (a+ bx).11 i

(2) x*+ (2x-Zf={l2(x-l)Y. [India Civil Service.]

7. Find an arithmetical progression whose first term is unity

such that the second, tenth and thirty-fourth terms form a geometric
series.

8. If a, fi are the roots of x-+px+q= 0, find the values of

a2 + a/3+ /3
2
, a3+ /3

3
, a4+ a2

/3
2+ 4

.

9. If 2x— a+ a~ 1 and 2y= b + b~ 1
, find the value of

xy+ *J(x2 -\)(y2 - 1).

10. Find the value of
3 3

(4+ Vl5)"
2+ (4-Vi5)'

2

_ 3 3"

(6 + V35)"
2 -(6-\/35)'

[R. M. A. Woolwich.]

11. If a and /3 are the imaginary cube roots of unity, shew that

a4+^4+ a- 1^- 1= 0.
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12. Shew that in any scale, whose radix is greater than 4, the

number 12432 is divisible by 111 and also by 112.

13. A and B run a mile race. In the first heat A gives B a start

of 11 yards and beats him by 57 seconds ; in the second heat A gives

B a start of 81 seconds and is beaten by 88 yards : in what time could
each run a mile ?

14. Eliminate x, y, z between the equations :

x2 —yz— a2
, y

2 - zx= b2
, z2 - xy = c2, x -fy + z<= 0.

[R. M. A. Woolwich.]

15. Solve the equations

:

ax2+ bxy + ey2= bx2+ cxy + ay2= d.

[Math. Tripos.]

16. A waterman rows to a place 48 miles distant and back in

14 hours: he finds that he can row 4 miles with the stream in the
same time as 3 miles against the stream : find the rate of the stream.

17. Extract the square root of

(1) (a2 + ab + be+ ea) {be + ca+ ab+ b2
)
(be+ ca+ ab + c2 ).

(2) l-.r+\/22^-15-8^2
.

10

18. Find the coefficient of xG in the expansion of (1 - Sx) :i

, and the

term independent of x in
(
-x2 -—

)
.

\^S AXJ

19. Solve the equations :

/1N 2.r-3 3^-8 ff+3 n

(2) x2 -y2 = xy — ab, (x+ y) (ax+ by) = 2ab(a + b).

[Trin. Coll. Camb.]

20. Shew that if a(b-c) x2 + b (c- a) xy+ c(a-b)y2 is a perfect

square, the quantities a, b, c are in harmonica! progression.

[St Cath. Coll. Camb.]

21. If

(y-z) 2+ (z-x) 2 + (x-y) 2= (y + z-2x)2 + (z + x-2y)2 + (x+y-2z)2
,

and x, y, z are real, shew that x=y = z. St Cath. Coll. Camb.]

22. Extract the square root of 3e582Gl in the scale of twelve, and

find in what scale the fraction - would be represented by -17.

o
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23. Find the sum of the products of the integers 1, 2, 3, ... n taken

two at a time, and shew that it is equal to half the excess of the sum of

the cubes of the given integers over the sum of their squares.

24. A man and his family consume 20 loaves of bread in a week.

If his wages were raised 5 per cent., and the price of bread were raised

2\ per cent., he would gain 6d. a week. But if his wages were lowered

7^ per cent., and bread fell 10 per cent., then he would lose \\d.

a week : find his weekly wages and the price of a loaf.

25. The sum of four numbers in arithmetical progression is 48 and
the product of the extremes is to the product of the means as 27 to 35 :

find the numbers.

26. Solve the equations :

(1) a{b-c)x2+ b(c-a)x+c(a-b) = 0.

fr%.
(x-a)(x-b) (x-c)(x-d) r, r m ..

(2) b ^—

—

l — \ 1±——£
. [Math. Tripos.]

v ' x-a — b x-c-d L J

27. If /s/a-x+ ^/b-x+\/c-x=0i
shew that

(a + b + c + 3x) (a + b+ c-x) = 4(bc + ca+ ab)-,

and if ^a+ 4/6+4/c= 0, shew that (a+ b+ c)3= 27abc.

28. A train, an hour after starting, meets with an accident which
detains it an hour, after which it proceeds at three-fifths of its former
rate and arrives 3 hours after time : but had the accident happened 50
miles farther on the line, it would have arrived l£ hrs. sooner : find the
length of the journey.

29. Solve the equations

:

2x+y= 2z, 9z-7x=6y, x3+f+ z3 =2l6.

[R. M. A. Woolwich.]

30. Six papers are set in examination, two of them in mathematics

:

in how many different orders can the papers be given, provided only that

the two mathematical papers are not successive ?

31. In how many ways can £5. 4s. 2d. be paid in exactly 60 coins,

consisting of half-crowns, shillings and fourpenny-pieces ?

32. Find a and b so that x3+ ax2+ llx+ 6 and x3 + bxi+ l4x+ 8
may have a common factor of the form x2 -\-px+ q.

[London University.]

33. In what time would A,B,C together do a work if A alone could
do it in six hours more, B alone in one hour more, and C alone in twice

the time 1
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34. If the equations ax+ by = \, ex2+ dy%= 1 have only i >ne solution

., . a2 b2
, , a b ___ „,

prove that — +-7 = 1, and x= -
, y= -, . [Math. Tiuros.]

35. Find by the Binomial Theorem the first five terms in the expan-

sion of (l-2x+ 2x2)~'2 '

36. If one of the roots of x2
-f-px+ q— is the square of the other,

shew that p3 - q (3p - 1 ) + q
2= 0.

[Pemb. Coll. Camb.]

37. Solve the equation

xi -5x^-6x-b = 0.

[Queen's Coll. Ox.]

38. Find the value of a for which the fraction

x3 - ax2+ 19.27 - a — 4

x?-(a + l) x2+ 23x-a~7

admits of reduction. Eeduce it to its lowest terms. [Math. Tripos.]

39. If a, b, c, x, y, z are real quantities, and

(a+ b + c) 2= 3 (be + ca+ ab- x2 -y2 - z2),

shew that a= b= c, and x= 0, y= 0, 2= 0.

[Christ's Coll. Camb.]

i

40. What is the greatest term in the expansion of ( 1 - - x ] when

the value of x is - ? [Emm. Coll. Camb.]

41. Find two numbers such that their sum multiplied by the sum
of their squares is 5500, and their difference multiplied by the difference

of their squares is 352. [Christ's Coll. Camb.]

1 _|_ b2+ 3c2
42. If x= \a, y= (k-l)b, s= (\-3)c, X= —

z
—

, 2
'

, , express
Qj "T" 0" ~p C

x2+y2+ z2 in its simplest form in terms of a, b, c.

[Sidney Coll. Camb.]

43. Solve the equations

:

(1) xa+ 3j*=16x+ 60.

(2) y
2 + z2 -x= z2+ x'i -y = x2+y2 -z = \.

[CoRrus Coll. Ox.]

44. If x, y, z are in harmonical progression, shew that

log (x+ z) + log {x -2y + z) = 2 log (x - z).
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45. Shew that

1 1.3/1\ 1.3.5 /lV
,

4 ._ /oN ,_

[Emm. Coll. Camb.]

3a-26~36-2c~3c-2a'

then will b(x+y + z) (5c+ 46 - 3a)= (9x+ 83/ + 13^) (a+ b + c).

[Christ's Coll. Camb.]

47. With 17 consonants and 5 vowels, how many words of four

letters can be formed having 2 different vowels in the middle and 1

consonant (repeated or different) at each end?

48. A question was lost on which 600 persons had voted ; the same
persons having voted again on the same question, it was carried by twice

as many as it was before lost by, and the new majority was to the former
as 8 to 7 : how many changed their minds? [St John's Coll. Camb.]

49. Shew that

l-x

(l+x) 2 5x* 9^5 13^7

l+£?-^
+
2.3

+
4.5

+
6.7

+ "'

[Christ's Coll. Camb.]

50. A body of men were formed into a hollow square, three deep,

when it was observed, that with the addition of 25 to their number a
solid square might be formed, of which the number of men in each side

would be greater by 22 than the square root of the number of men in

each side of the hollow square : required the number of men.

51. Solve the equations

:

(1) V(a + x)2 + 2 V(a^02= 3 \/a2^2
.

(2) (x - a)* (x - 6)2 - {x - c)i (x - d)% = (a - c)% (6 - d)K

52. Prove that

3/, t ,
2 2 - 5 2.5.8

v/4 =H 1 v —— +N ^6 6.12 6.12.18

[Sidney Coll. Camb.]

53. Solve $6(5a?+ 6)-^5(6#-ll)=l.
[Queens' Coll. Camb.]
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54. A vessel contains a gallons of wine, and another vessel con-
tains b gallons of water: c gallons are taken out of eaeh vessel and
transferred to the other; this operation is repeated any number of
times : shew that if c(a+ b) = ab, the quantity of wine in each vessel

will always remain the same after the first operation.

55. The arithmetic mean between m and n and the geometric

mean between a and b are each equal to -: find m and n in termsm+ n
of a and b.

56. If x, y, z are such that their sum is constant, and if

(z+x-2y)(x+y-2z)

varies as yz, prove that 2 (y+ z) - x varies as yz.

[Emm. Coll. Camb.]

57. Prove that, if n is greater than 3,

1.2. M CV2.3.'l C_ 1 + 3.4.«<X_2
- + (-l)'-(r+l)(/-+2)=2.»- 3Cr .

[Christ's Coll. Camb.]

53. Solve the equations

:

(1) *J'2x - 1 + */&v - 2= *J~4x - 3 + *Jbx^~i.
3 I

(2) 4{(sa -16)*+8}=#8+16(#a -16)*
[St John's Coll. Camb.]

59. Prove that two of the quantities x, y, z must be equal to one

., .j. y - z z - x x— y n
another, if f h -—— + 2- = 0.

l+yz l+zx l+xy

60. In a certain community consisting ofp persons, a percent, can
read and write ; of the males alone b per cent., and of the females alone

c per cent, can read and write : find the number of males and females in

the community.

61. If
!•=?•'-"

[Emm. Coll. Camb.]

62. Shew that the coefficient of x4n in the expansion of

(1 —x+ x2 — x3)' 1 is unity.

63. Solve the equation

x-a x-b b a+ = +
a x —a x-b'

[London University.]

64. Find (1) the arithmetical series, (2) the harmonical series of

n terms of which a and b are the first and last terms ; and shew that

the product of the r* term of the first series and the {n — r+ l)
tb term of

the second scries is ab.
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65. If the roots of the equation

1 " q+^J
*2+p (1 +q) x+q (q

~ 1) + f=0

are equal, shew that p
2= 4q. [R. M. A. Woolwich.]

66. If a2+ b2= lab, shew that

l°g
jg (« + V)

}
= g (

loS a+ loS h)-

[Queen's Coll. Ox.]

67. If n is a root of the equation

x- (1 - ac) - x (a2 + c2) - (1 + ac) = 0,

and if n harmonic means are inserted between a and c, shew that the

difference between the first and last mean is equal to ac {a — c).

[Wadham Coll. Ox.]

68. If n + 2
8 :

W" 2P
4
= 57 : 16, find n.

69. A person invests a certain sum in a 6rr per cent. Government
loan : if the price had been £3 less he would have received \ per cent,

more interest on his money ; at what price was the loan issued ?

70. Solve the equation

:

{(^
2+ ^+ l)3 -(^2+ l)3 -^3

}{(^
2 -^+ l) 3 -(^2+ l)3+^3

}

= 3 {(^
4+ x2+ 1)

3- (#*+ If- a6}

.

[Merton Coll. Ox.]

71. If by eliminating x between the equations

x2+ ax+ b

=

and xy + 1 (x+y) +m= 0,

a quadratic in y is formed whose roots are the same as those of the

original quadratic in x, then either a =21, and 6= m, or b+ m=al.
[R. M. A. Woolwich.]

72. Given log 2= '30103, and log 3 = -47712, solve the equations

:

(1) 6*=y-6-«. (2) V5M-V5-*=|q.

73. Find two numbers such that their sum is 9, and the sum of

their fourth powers 2417. [London University.]

74. A set out to walk at the rate of 4 miles an hour ; after he had
been walking 2| hours, B set out to overtake him and went 4£ miles

the first hour,4| miles the second, 5 the third, and so gaining a quarter

of a mile every hour. In how many hours would he overtake A l

75. Prove that the integer next above (^3+ l)2m contains 2m + 1 as

a factor.
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76. The series of natural numbers is divided into groups 1 ; 2, 3, 4

;

5, 6, 7, 8, 9 ; and so on : prove that the sum of the numbers in the

?i
th group is (?i- l)3+ n3

.

77. Shew that the sum of n terms of the series

2
+
|2_W

+
[3 \2/

+
|4 \2J

+

,, ,
1.3.5.7 (2n-l)

is equal to 1 =—:—

-

.

1 2'* \n

[R. M. A. Woolwich.]

1 + 2x
78. Shew that the coefficient of xn in the expansion of j—2

is

n n-1 w-2

(-l)S 3(-l)3, 2(-l)3,

according as n is of the form 3m, 3m + 1, 3«i + 2.

79. Solve the equations :

(1 ) £ =^_ 2 _ yyz

a b c x+y + z

.„. x ii z v z x

y z x x y z

[Univ. Coll. Ox.]

80. The value of xyz is 7£ or 3f according as the series a, x, y, z,

b is arithmetic or harmonic : find the values of a and b assuming them
to be positive integers. [Merton Coll. Ox.]

81. If ay-bx=c \/(x -a)2+ (y- b) 2
, shew that no real values of x

and y will satisfy the equation unless c2 < a2 + b2.

82. If (#+l)2 is greater than 5x - 1 and less than 7#-3, find the

integral value of x.

83. If P is the number of integers whose logarithms have the

characteristic p, and Q the number of integers the logarithms of whose

reciprocals have the characteristic - q, shew that

log
10
P-log

10 #=p-2 + l.

84. In how many ways may 20 shillings be given to 5 persons so

t lat no person may receive less than 3 shillings ?

85. A man wishing his two daughters to receive equal portions

• rilen they came of age bequeathed to the elder the accumulated interest

of a certain sum of money invested at the time of his death in 4 per

cent, stock at 88 ; and to the younger he bequeathed the accumulated

interest of a sum less than the former by £3500 invested at the same

time in the 3 per cents, at 63. Supposing their ages at the time of

their father's death to have been 17 and 14, what was the sum invested

in each case, and what was each daughter's fortune ?

11. 11. A 32
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86. A number of three digits in scale 7 when expressed in scale 9

has its digits reversed in order : find the number.
[St John's Coll. Camb.]

87. If the sum of m terms of an arithmetical progression is equal

to the sum of the next n terms, and also to the sum of the next p
terms

;
prove that (m + n)( i= (wi +p)( )

•

[St John's Coll. Camb.]

88. Prove that

1 1 1 / 1 1 1 V
+ 7—4 + 7-—.vi = 7— +—7 +(y-z? {z-xf (x-y)2 \y-z z-x x-y)

[R. M. A. Woolwich.]

89. If m is negative, or positive and greater than 1, shew that

lm+ 3™+ 5m+ + (2n-l)m >nm + 1
.

[Emm. Coll. Camb.]

90. If each pair of the three equations

x2 -p1
x+ ql

= 0, aP-ptfC+q^Q, x2 -p3
x+q

3=0,

have a common root, prove that

Pi
2
+P-? + P3

2 + 4 (?i + ft + ft) = 2 (P2P2 +P?,Pi +PiP<J-

[St John's Coll. Camb.]

91. A and B travelled on the same road and at the same rate from
Huntingdon to London. At the 50th milestone fioin London, A over-

took a drove of geese which were proceeding at the rate of 3 miles in 2

hours ; and two hours afterwards met a waggon, which was moving at

the rate of 9 miles in 4 hours. B overtook the same drove of geese at

the 45 th milestone, and met the waggon exactly 40 minutes before he
came to the 31 st milestone. Where was B when ^4 reached London ?

[St John's Coll. Camb.]

92. Ifa + 5 + c+ c?=0, prove that

abc+ bed+ cda+ dab= *J(bc- ad) (ca - bd) {ah — cd).

[R. M. A. Woolwich.]

93. An A. P., a G. P., and an H. P. have a and b for their first two
terms : shew that their (?i+ 2)

th terms will be in G. P. if

1—77-0 «tn = . [Math. Tripos.]
ba(b2n -a2n

) n L J

x
94. Shew that the coefficient of xn in the expansion of , r-, rv

(x — a) (x - 0)

an — bn I
in ascending power of x is —^ . —7- ; and that the coefficient of x2n01 a-b anbn

'

in the expansion of -,, L is 2n_1 hi2+ 4w + 2l __ r, r, -.r (l-#)3 »
' [Emm. Coll. Camb.]
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95. Solve the equations ;

, sF+y* : ay=34 : 15.

[St John's Coll. Camb.]Till
96. Find the value of 1 +

ratio surd.

/ 1 / #--1

*/x - y

1 1 1 1

... in the form of a quad-

[R. M. A. Woolwich.]

97. Prove that the cube of an integer may be expressed as the
difference of two squares ; that the cube of every odd integer may be
so expressed in two ways ; and that the difference of the cubes of any
two consecutive integers may be expressed as the difference of two
squares. [Jesus Coll. Camb.]

98. Find the value of the infinite series

1 1 J
3 i

13
+

|5
+

|7
+

|9
+ '" [Emm. Coll. Camb.]

99. If x—
" a

b+ d+ b+ d+

and

then

y
a a

d+ b+ d+ b+ '

bx-dy=a-c. [Christ's Coll. Camb.]

100. Find the generating function, the sum to n terms, and the
nth term of the recurring series 1 + 5#+ 7x2+ 1 7.V3+ 31.

z

4+

101. If a, 6, o are in H. P., then

a+b c+b
(1) 2^> + 27^>4 -

(2) b2 (a-c) 2=2{c2 (b-a)2 + a2 (c-b)2
}. [Pemb. Coll. Camb.]

102. If a, 6, c are all real quantities, and x3 - 3b2x+ 2c3 is divisible

by x - a and also by x - b
;
prove that either a = b = c, or a= — 26 = — 2<\

[Jesus Coll. Ox.]

103. Shew that the sum of the squares of three consecutive odd
i umbers increased by 1 is divisible by 12, but not by 24.

104. Shew that is the greatest or least value of ax2 + 2bx+ c,

according as a is negative or positive.

If x*+yA+ zi+y2z1+ z2x2+ x2
y

2= Zxyz (x+g + z), and x, y, z arc all

real, shew that x=y=z. [St John's Coll. Camb.]

32—2
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105. Shew that the expansion of /l-Vl-a;2
"

V 2~

x JL3 ^ 1.3.5.7 a»
1S

2
+ 2?4' 6

+
2. 4. 6.8* 10

+

106. If a, /3 are roots of the equations

x2+px+ q= 0, x2n+pnxn+ q
n= 0,

where n is an even integer, shew that ~ ,
— are roots of

P a

.r»+ l + (#+l)n= 0. [Pemb. Coll. Camb.]

107. Find the difference between the squares of the infinite

continued fractions

b b b , d d d
a+-—- ^—,- ^.. j

aD0- c+2a+ 2a + 2a+ " "' 2c+ 2c+ 2c +
[Christ's Coll. Camb.]

108. A sum of money is distributed amongst a certain number of

persons. The second receives Is. more than the first, the third 2s.

more than the second, the fourth 3s. more than the third, and so on.

If the first person gets Is. and the last person £3. 7s., what is the

number of persons and the sum distributed 1

109. Solve the equations :

K
' a b+ c b c+ a c a+ b

(2)
~2

+x*+f= l3 i> &&+"»=*&

110. If a and b are positive and unequal, prove that

a*-bn >

n

(«

-

b) (ab) 2
.

[St Cath. Coll. Camb.]

111. Express ^r^ as a continued fraction; hence find the least

values of x and y which satisfy the equation 396.t'— 763y= 12.

112. To complete a certain work, a workman A alone would take

m times as many days as B and C working together ; B alone would
take n times as many days as A and C together ; C alone would take

p times as many days as A and B together : shew that the numbers of

days in which each would do it alone are as m+ 1 : »+l : jp+ 1.

Prove also H + -^— = 2. m ,, . ,_ ,m+l n+ l p + l [R. M. A. Woolwich.]
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113. The expenses of a hydropathic establishment are partly con-
stant and partly vary with the number of boarders. Each boarder
pays £65 a year, and the annual profits are £9 a head when there are
50 boarders, and £10. 13s. 4d. when there are 60: what is the profit on
each boarder when there are 80 ?

114. If x2y= 2x — y, and x2 is not greater than 1, shew that

[Peterhouse, Camb.]

X V
115. If -s-

—

h — —sr—i= Ti and xv— c2. shew that when a and c
al -y- a2 -x2 o

°

are unequal,
(a2 -c2

)

2 -b2c2= 0, or a2 + c2 -b2= Q.

116. If (1 + x+ x2fr= 1 + k\x+ l'
2
x2 + . . .,

and (x - 1
)
3r= a*" - c^' ~ 1 + c^s*" 2 - . .

.

;

prove that (1) \—k
x+ k

2
- = 1,

!3r
(2) l-k^ + hc.,— = ±

\r\2r

[R. M. A. Woolwich.]

117. Solve the equations :

(1) {x — y)
2+ 2ab= ax+by, xy + ab= bx+ ay.

(2) x2 -y2 + z2= 6, 2yz-zx+ 2xy= 13, x-y+ z= 2.

118. If there are n positive quantities alt a2 ,... an , and if the

square roots of all their products taken two together be found, prove
that

/ — / n — \ , N

Vaia2 + V«i«3+ <—«— («i + «2+ + an);

hence prove that the arithmetic mean of the square roots of the

products two together is less than the arithmetic mean of the given

quantities. [R. M. A. Woolwich.]

119. If 6¥+«V=a26'i
, and d2 + V= x2 +y2= \, prove that

Wx6+ a*yG= (b2xA -f a2
y

4
)
2

. [India Civil Service.]

120. Find the sum of the first n terms of the series whose rth terms

[St John's Coll. Camb.]

(1) ~

r
|~_, (2) (a+r*6)*-'

x+ 2
121. Find the greatest value of o . ~a

2iX" t~ *iX +
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122. Solve the equations :

(1) l+^4= 7(l+#)4
.

(2) 3#y+20=ff0+6y=2^s+3d?=O.

123. If «x, a2 y a3> ai
are any f°ur consecutive coefficients of an

expanded binomial, prove that

—I—I 3—= £-
. [Queens' Coll. Camb.1

124. Separate '

\ , / „ =r into partial fractions ; and

3x — 8
find the general term when

2
is expanded in ascending powers

of X.

125. In the recurring series

5 - lx+ 2x*+ lx3+ bx4 + 7x:
>+

4 2

the scale of relation is a quadratic expression ; determine the unknown
coefficient of the fourth term and the scale of relation, and give the

general term of the series. [R. M. A. Woolwich.]

126. If x, y, z are unequal, and if

2a-3v= (-^2,and 2a-3z^^^
,9 y z

(v - *)
2

then will 2a -3.?=— , and x+y+ z= a. [Math. Tripos.]
Ob

127. Solve the equations :

(1) xy + 6 = 2x-x2
, xy-9 = 2y-y2

.

(2) {ax)^ a = {by)^ h
, bXo& x= alo%y.

128. Find the limiting values of

(1) x \fx2+ «2 - *JxA+ a4
, when x= oc .

, . \fa+ 2x—\/3x , rr tt T
(2) ——

—

—?——
, when x—a. [London University.]

\/Za +x- 2sjx

129. There are two numbers whose product is 192, and the quotient

of the arithmetical by the harmonical mean of their greatest common
measure and least common multiple is 3f| : find the numbers.

[R. M. A. Woolwich.]
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130. Solve the following equations :

(1) yiar+ 37- J/l3.r-37= J/2.

(2) 6Vl-22+ c\/l-y2= «,

c \/l - #2+ « Vl - 22= 6,

a*Jl-y2 + b*Jl-x2 =c. _

131. Prove that the sum to infinity of the series

1 1.3 1.3.5 .23 2 ,n
2^3 "

24)4
+ ~Wb *

*
"

1S
24

~
3 * [Math. Tripos.]

132. A number consisting of three digits is doubled by reversing
the digits; prove that the same will hold for the number formed by
the first and last digits, and also that such a number can be found in
only one scale of notation out of every three. [Math. Tripos.]

133. Find the coefficients of x12 and xr in the product of

1+x3

n_ 2ui_ \
an(* 1 -*+*" [R- M. A. Woolwich.]

134. A purchaser is to take a plot of land fronting a street ; the
plot is to be rectangular, and three times its frontage added to twice
its depth is to be 96 yards. What is the greatest number of square
yards he may take ? [London University.]

135. Prove that

(a + b+ c+ dy+ (a+ b-c-dy + (a-b + c-dy + (a-b-c+ d)*

- (a+ b + c - d)* - (a + b - c + d) A - (a - b+c+df - (- a+ b + c+ d)*

= 192 abed.

[Trin. Coll. Camb.]

136. Find the values of a, b, c which will make each of the ex-

pressions xt+ aaP+ bx'Z+cx+l and xA + 2ax3 + 2bx2 + 2cx+ 1 a perfect

square. [London University.]

137. Solve the equations

:

f
(1) 4^S= 3( ^=65.

(2) \j2x2+\ + \l& - 1 =
V3 - 2j--

138. A farmer sold 10 sheep at a certain price and 5 others at 10*.

less per head; the sum he received for each lot was expressed in pounds
by the same two digits : find the price per sheep.
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139. Sum to n terms :

(1) (2»~l)+2(2»-3)+3(2»-5)+....

(2) The squares of the terms of the series 1, 3, 6, 10, 15

(3) The odd terms of the series in (2). [Trin. Coll. Camb.]

140. If a, /3, y are the roots of the equation x3+ qx+r=0 prove
that 3 (a2+ /3

2 + y
2
)
(a5+ /3

5+ y
5
)= 5 (a3+ /3

3 + y
3
) (a

4+ £4+ y
4
).

[St John's Coll. Camb.]

141. Solve the equations :

(1) a?(%-5)= 41 (2) A3+y3 + z3= 495)
y(2A+ 7) = 27J' ar+y+*=15V.

Ay2=105

)

[Trin. Coll. Camb.]

142. If a, b, c are the roots of the equation x3+ qx2+r= 0, form the
equation whose roots are a+ b-c, b+ c — a, c+ a-b.

143. Sum the series

:

(1) n+ (n-l)x+ (?i-2)x2 +...+2zn-2+ xn - 1
;

(2) 3-x- 2x2 - 1 6a-3 - 28^4 - 676a5 + ... to infinity

;

(3) 6 + 9 + 14+ 23 + 40+ .. . to n terms.

[Oxford Mods.]

144. Eliminate a, y, z from the equations

x-i+y-i + z- 1= a~ 1
, x+y+ z=b.

.v
2 + y

2+ z2= c2, A3
+3/

3+ £r
3= c?

3
,

and shew that if a, y, z are all finite and numerically unequal, b cannot
be equal to d. [R. M. A. Woolwich.]

145. The roots of the equation 3a2 (a2+ 8) + 16(a-3 - 1) = are not
all unequal : find them. [R. M. A. Woolwich.]

146. A traveller set out from a certain place, and went 1 mile the
first day, 3 the second, 5 the next, and so on, going every day 2 miles
more than he had gone the preceding day. After he had been gone
three days, a second sets out, and travels 12 miles the first day, 13 the
second, and so on. In how many days will the second overtake the
first? Explain the double answer.

147. Find the value of

11111 1

3+ 2+ 1+ 3+ 2+ 1 +
""
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148. Solve the equation

x3+ 3ax2+ 3 (a2 - be) as + a3 + b3+ c3 - Zabc= 0.

[India Civil Service.]

149. If n is a prime number which will divide neither «, b, nor
a+ b

y
prove that an

~ 2b — an
~

:ib2 + an ~ ib3 — ...+abn ~ 2 exceeds by 1 a
multiple of n. [St John's Coll. Camb.]

150. Find the ?t
th term and the sum to n terms of the series whose

sum to infinity is (1 - abx2
){\ — ax)~ 2 (l — bx)~ 2

.

[Oxford Mods.]

151. If a, b, c are the roots of the equation x3+px+ q= 0, find the
b2 + c2 c2+ a2 a2+ b2

equation whose roots are ,
—

-,— , .

1 a b c

[Trin. Coll. Camb.]

152. Prove that

(y+z- 2xY+ (z + x-2y) i+ (x+i/-2z) i= 18 (x2+y2+ z2 - yz - zx - xy)2
.

[Clare Coll. Camb.]

153. Solve the equations

:

( 1

)

x3 - 20x 4-133 = 0, by Cardan's method.

(2) x5 - 4t4 - KU-3+ 40.i'
2 + 9x -36 = 0, having roots of the form

+ a, ±b, c.

154. It is found that the quantity of work done by a man in an
hour varies directly as his pay per hour and inversely as the square
root of the number of hours he works per day. He can finish a piece

of work in six days when working 9 hours a day at Is. per hour. How
many days will he take to finish the same piece of work when working
16 hours a day at Is. 6d. per hour ?

155. If sn denote the sum to n terms of the series

1.2 + 2.3 + 3.4+...,

and o^-! that to n — 1 terms of the series

1 1 1

1.2.3.4
+
2.3.4.5

+
3.4.5.6

+ - "'

shew that 1 8sncrn _ x
- sn + 2 = 0.

[Magd. Coll. Ox.]

156. Solve the equations :

(1) (12a?-l)(&p-l)(4a?-l)(&e-l)=5.

(2) I fo+^ fo-S) 1 (x+3)(x-5) _2_ (a?+5)(a?-7) 92
^

;
5 (x+ 2)(x - 4)

+
9 (x+ 4) (x- 6)

""
1 3 {x+ 6)(* - 8)

~ 585
*

[St John's Coll. Camb.]
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157. A cottage at the beginning of a year was worth £250, but it

was found that by dilapidations at the end of each year it lost ten per
cent, of the value it had at the beginning of each year : after what
number of years would the value of the cottage be reduced below £25 ?

Given log
10 3= -4771213. [R. M. A. Woolwich.]

158. Shew that the infinite series

1 1.4 1.4.7 1.4.7.10
+
4 4.8

+
4.8.12

+
4.8.12.16

+ '"'

i+?_l ll? 2.5.8 2.5.8. 11
+
6
+

6 . 12
+

6 . 12 . 18
+

6 . 12 . 18 . 24
+ '••

'

are equal. [Peterhouse, Camb.]

159. Prove the identity

H x(x - a) x{x - a) (x - /3)

a/3 ~aPy~
+

r

|

X
[

x(x+ a)
|

x(x+ a)(x+ p)
|

\
\ a a(5 a/3-y J

_x> x2 (x2 - a2) _ x2 (x2 -a2)(x2 -^)
a „2R2 „2/92„2

+••••
a2^2 a2

(3
2
y

[Trin. Coll. Camb.]

160. If n is a positive integer greater than 1, shew that

n*-57i3+ 60n2 -56n
is a multiple of 120. [Wadham Coll. Ox.]

161. A number of persons were engaged to do a piece of work
which would have occupied them 24 hours if they had commenced at
the same time; but instead of doing so, they commenced at equal
intervals and then continued to work till the whole was finished, the
payment being proportional to the work done by each : the first comer
received eleven times as much as the last ; find the time occupied.

162. Solve the equations

:

x y -7
(1)

y
2 -3 x2 -S x3+f

(2) y2 + z2_ x{]/ + z)= a^

z2+ x2 — y (z+x) = b2
,

x'2 -t-y
2 - z (x +3/) = c2 . [Pemb. Coll. Camb.]
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163. Solve the equation

a3 (6 - c) {x - b) (x -c) + b3 (c- a) {x - c) (x - a) + c-
3 (a - b) (x - a) (x - b) = ;

also shew that if the two roots are equal

__+-_ + -j- = 0. [St John's Coll. Camb.1
s]a — s/b~ sfc

L

164. Sum the series :

(1) 1.2.4 + 2.3.5 + 3. 4.6+... to n terms.

(2) S
+
il
+
5
+- toiuf-

165. Shew that, if a, 6, c, d be four positive unequal quantities and
s= a+ b+ c+ d, then

(s - a) (s — b)(s — c) (s -d)> 8labcd.

[Peterhouse, Camb.]

166. Solve the equations

:

(1) \/x+ a — \Jy - a= - v/a, \/x—a-\!i/ Jta=-Ja.

(2) x+ i/ + z= x2+f+ z*= ^(x3 + i/+ z5) = Z.

[Math. Tripos.]

167. Eliminate I, m, n from the equations

:

lx+ my + nz= rax+ ny+ lz= nx+ ly + mz= Jc
1

{I'
1+m2+ n2

) = 1

.

168. Simplify

a (b+ c - a)2 + . . . + . . . + (b + c - a) (c+ a - b) {a+ b - c)

a2 (b+ c-a) + ... + ... -(6 + c-a)(c+ a-6)(a + 6-c)

'

[Math. Tripos.]

169. Shew that the expression

(x2 - yz)3+ (y
2 - zx)3 + (z2 - xy) 3 - 3 (x2 - yz) (y

2 - zx) (z
2 — xy)

is a perfect square, and find its square root. [London University.]

170. There are three towns A, B, and C; a person by walking
from A to B, driving from B to C, and riding from C to A makes the
journey in 15^ hours ; by driving from A to B, riding from B to C, and
walking from C to A lie could make the journey in 12 hours. On foot

he could make the journey in 22 hours, on horseback in 8|- hours, and
driving in 11 hours. To walk a mile, ride a mile, and drive a mile he
takes altogether half an hour: find the rates at which he travels, and
the distances between the towns.
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171. Shew that ?t
7 -7n5 +14?i3 -8?i is divisible by 840, if n is an

integer not less than 3.

172. Solve the equations

:

(1) six1+ 12y+ *Jy
2+ I2x= 33, x+y=2S.

,~x u(y-x) z(y-x) , y(u — z) x(u-z)
7

(2) —^ =a, -^ ' = &, — - = c, — J= d.w
2 — W 2-W # — # -^-y

[Math. Tripos.]

173. If s be the sum of n positive unequal quantities a, b,c..., then

+—= +— + ... > -
. [Math. Tripos.]

174. A merchant bought a quantity of cotton ; this he exchanged
for oil which he sold. He observed that the number of cwt. of cotton,

the number of gallons of oil obtained for each cwt., and the number of

shillings for which he sold each gallon formed a descending geometrical
progression. He calculated that if he had obtained one cwt. more of

cotton, one gallon more of oil for each cwt., and Is. more for each
gallon, he would have obtained £508. 9s. more ; whereas if he had
obtained one cwt. less of cotton, one gallon less of oil for each cwt., and
Is. less for each gallon, he would have obtained .£483. 13s. less : how
much did he actually receive ?

175. Prove that

2 (b+ c - a - x)*(b - c) (a-x) = 16 (b -c)(c- a) (a -b)(x- a) (x - b) (x - c).

[Jesus Coll. Camp,.]

176. If a, /3, y are the roots of the equation st?—paP+r=0, find the

equation whose roots are —— ,
^-~

,
-—-. TR. M. A. Woolwich.]

a p y

177. If any number of factors of the form a2+ b2 are multiplied
together, shew that the product can be expressed as the sum of two
squares.

Given that (a2+ b2)(c2+ d2)(e2+f2)(c/2+ h'2)=p2+ q
2
, find p and q in

terms of a, 6, c, d, e,f, g, h. [London University.]

178. Solve the equations

x2+y2=6l, a*-y*=91. [R. M. A. Woolwich.]

179. A man goes in for an Examination in which there are four
papers with a maximum of m marks for each paper; shew that the
number of ways of getting 2m marks on the whole is

- (m+ 1 )
(2m2+ Am+ 3). [Math. Tripos.]
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180. If a, j3 are the roots of «8+jw?+l=0, and y, S .are the roots

of x2+qx+l=0; shew that (a - y)(/3 - y)(a + 8)(/3+ 8) = J
2 - jo2.

[R. M. A. Woolwich.]

181. Shew that if am be the coefficient of xm in the expansion of

(1 +#)*, then whatever n be,

/ ,s i (n~l)(n — 2)...(n-m+ l). , >

« -«
1
+ «.,-...+(-l)-- 1«m _

1
= ^ A

|w
;

_^
2U(-i)--i.

[New Coll. Ox.]

182. A certain number is the product of three prime factors, the

sum of whose squares is 2331. There are 7560 numbers (including

unity) which are less than the number and prime to it. The sum of

its divisors (including unity and the number itself) is 10560. Find the

number. [Corpus Coll. Camb.]

183. Form an equation whose roots shall be the products of every
two of the roots of the equation x3 - ax2 + hx+ c= 0.

Solve completely the equation

2afi+ xA +x+ 2=

1

2x*+

1

2x2
.

[R. M. A. Woolwich.]

184. Prove that if n is a positive integer,

nn -n(n-2)n + \ -'(n-4)n - = 2B[w.

185. If (6V6 + 14) 2n + 1 =:jr, and if F be the fractional part of N,
prove that NF=202>t + 1

. [Emm. Coll. Camb.]

186. Solve the equations :

(1) x+y+z= 2, x2+y2+ z2= 0, x3+y3+ z3= - 1.

(2) x*-(y-z) 2= a2
, y

2 -(z-x) 2= b2, z2 -{x-y)2=cK

[Christ's Coll. Camb.]

187. At a general election the whole number of Liberals returned

was 15 more than the number of English Conservatives, the whole

number of Conservatives was 5 more than twice the number of English

Liberals. The number of Scotch Conservatives was the same as the

number of Welsh Liberals, and the Scotch Liberal majority was equal

to twice the number of Welsh Conservatives, and was to the Irish

Liberal majority as 2 : 3. The English Conservative majority was 10

more than the whole number of Irish members. The whole number of

members was 652, of whom 60 were returned by Scotch constituencies.

Find the numbers of each party returned by England, Scotland, Ire-

land, and Wales, respectively. [St John's Coll. Camb.]

188. Shew that a5 (c - b) + b5 (a - c) + & (b - a)

= (b- c){c - a)(a - b) (2a3+ 2a*b + abc).
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189. Prove that a3 3c*2 3a 1

a2 a2+ 2a 2a+l 1

a 2a+l «+ 2 1

13 3 1

= (a-l)«

[Ball. Coll. Ox.]

190. If —|
1 j H ? =0, prove that a, b, c are in harmonical

a c a—b c—b
progression, unless b= a + c. [Trin. Coll. Camb.]

191. Solve the equations

:

(1) .r3 - 13#2+15x+ 189 = 0, having given that one root ex-

ceeds another root by 2.

(2) .r
4 - Ax2 + 8x -f 35 = 0, having given that one root is

2 + \/-~3. [R. M. A. Woolwich.]

192. Two numbers a and b are given ; two others av b
±
are formed

by the relations 3a
1
= 2<x+6, 3b

l
= a+ 2b; two more a

2 , b2 are formed
from alf b

x
in the same manner, and so on ; find an , bn in terms of a and

b, and prove that when n is infinite, an—bn . [R. M. A. Woolwich.]

193. If x+y + 2+ w= 0, shew that

mr (w+ a;)
2 -+-yz (w — x)2+ wy(w+y) 2

+ zx(io -yf+ wz(w + z)2 + xy (w - z)2+ 4xyzw= 0.

[Math. Tripos.]

be -a2

194. If a + be not altered in value by interchanging a
a2+ fc2+ c2

pair of the letters a, b, c not equal to each other, it will not be altered

by interchanging any other pair; and it will vanish if a+ b + c=\.

[Math. Tripos.]

195. On a quadruple line of rails between two termini A and B
y

two down trains start at 6.0 and 6.45, and two up trains at 7.15 and
8.30. If the four trains (regarded as points) all pass one another

simultaneously, find the following equations between xlt x2 , x3i x4 ,
their

rates in miles per hour,

*53/i) Am+ 5#o Am -+- 1Ox,

«VO Jb -t

where m is the number of miles in AB. [Trin. Coll. Camb.]

196. Prove that, rejecting terms of the third and higher orders,

^-4 *+ (1 ~ y)
2

= l + ^+y) + ^(3.*
2+^ + 3y2

).

i+V(i -#) (i -y) 2 8

[Trin. Coll. Camb.]
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197. Shew that the sum of the products of the series

a, a — b, a -2b, , a — {n -l)b,

taken two and two together vanishes when n is of the form 3m8—
1,

and 2a= (3m - 2) (m + 1)6.

198. If n is even, and a+ /3, a-/3 are the middle pair of terms,

shew that the sum of the cubes of an arithmetical progression is

na{a2 + (w2 -l)/32
}.

199. If «, b, c are real positive cpiantities, shew that

111 g8+ 68+ C8

a b c a3b3c3

[Trin. Coll. Camb.]

200. A, B, and C start at the same time for a town a miles distant

;

A walks at a uniform rate of u miles an hour, and B and C drive at a

uniform rate of v miles an hour. After a certain time B dismounts
and walks forward at the same pace as A, while C drives back to meet
A

J
A gets into the carriage with C and they drive after B entering the

town at the same time that he does : shew that the whole time occupied

a 3v + u . rT. r. -.

was - .
- hours. [Peterhouse, Camb.]

v 3u+v L ' J

201. The streets of a city are arranged like the lines of a chess-

board. There are m streets running north and south, and n east and
west. Find the number of ways in which a man can travel from the

N.W. to the S.E. corner, going the shortest possible distance.

[Oxford Mods.]

202. Solve the equation */x+ 27 + v 55 -x— 4.

[Ball. Coll. Ox.]

203. Shew that in the series

ab + (a + x) (b+ x) + (a+ 2x) (b+ 2x) + to 2n terms,

the excess of the sum of the last n terms over the sum of the first n
terms is to the excess of the last term over the first as ril to 2n — 1

.

204. Find the nth convergent to

(1)



512 HIGHER ALGEBRA.

206. If a, #, y are the roots of x3 + qx+r= 0, find the value of

ma+ n m{3+ n my+n
ma — n m(3 - n my — n

in terms of m, n, q, r. [Queens' Coll. Camb.]

207. In England one person out of 46 is said to die every year,

and one out of 33 to be born. If there were no emigration, in how
many years would the population double itself at this rate ? Given

log 2 = '3010300, log 1531 = 3-1849752, log 1518= 3-1812718.

208. If (1 + x+ x2
)
n=

a

+ a
x
x+ a^c2+ , prove that

7i (n — 1

)

n '

«P -war -i + -y72~ «r-2- + (- 1
)
r

r! (n- r) \

a«
=

>

unless r is a multiple of 3. What is its value in this case 1

[St John's Coll. Camb.]

209. In a mixed company consisting of Poles, Turks, Greeks,
Germans and Italians, the Poles are one less than one-third of the
number of Germans, and three less than half the number of Italians.

The Turks and Germans outnumber the Greeks and Italians by 3;
the Greeks and Germans form one less than half the company ; while
the Italians and Greeks form seven-sixteenths of the company : deter-

mine the number of each nation.

210. Find the sum to infinity of the series whose nth term is

(n+ l)n- 1 (?i+2)- 1 (-x)n+1. [Oxford Mods.]

211. If n is a positive integer, prove that

n(n2 -l) n(n2 -l)(n2 -22
)n

[2
+

|2J_3

n{n2 -l){n2 -V) (n2 -r2
)* K ;

\r \r+ l
~

k ;
'

[Pemb. Coll. Camb.]

212. Find the sum of the series

:

(1) 6, 24, 60, 120, 210, 336, to n terms.

(2) 4 - 9x+ 16x2 - 25^3+ 36^ - 49^+ to inf.

1.3 3. 55. 7 7.

9

.

(
3

) -x + ^r + ^3-+-^r + tomf-

213. Solve the equation Ax Qx+ 2 8#+l
6x+ 2 9.r+ 3 12# =0.

8.r+l 12.r l6x+ 2

[King's Coll. Camb.]
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214. Shew that

(1) a2 (l + ^2
) + ^2 (l+c2

)+ c2 (l+rt2)>6«6^

(2) ?2(rtP + «+ Z)P + «+^ + «+...)>(« ,> + 6' ,+ C"+...)(^+^ + C^+...),

the number of quantities a, 6, c,... being n.

215. Solve the equations

yz = a{y+ z) + a\

zx=a(z+x) +/3>.

xi/= a(x+y) + y\ [Trin. Coll. Camb.]

216. If n be a prime number, prove that

l(2»-^l)+2^- 1 +^+3f4«-^!U...+(»-l)^-^^

is divisible by n. [Queen's Coll. Ox.]

217. In a shooting competition a man can score 5, 4, 3, 2, or

points for each shot: find the number of different ways in which he
can score 30 in 7 shots. [Pemb. Coll. Camb.]

218. Prove that the expression x> - bx3+ ex2+ dx - e will be the

product of a complete square and a complete cube if

126_9^_5e_^
5 " b

~
c
~

c2
*

219. A bag contains 6 black balls and an unknown number, not
greater than six, of white balls ; three are drawn successively and not

replaced and are all found to be white; prove that the chance that
ft*7*7

a black ball will be drawn next is jr—r

.

[Jesus Coll. Camb.]

220. Shew that the sum of the products of every pair of the

squares of the first n whole numbers is —- n(n2 — l)(4?i2 — l)(5?i + G).

[Caius Coll. Camb.]

221. If +—— '4.£_i ^ = o has equal roots, prove
x — a x-b x-c

that a(b-c) ±/3 (c -a)±y (a- b) = 0.

222. Prove that when n is a positive integer,

». 2.-..^y -.+ <"-»X»-4) 8..,

(n-4)(»-5)(»-6) «,_,. ,

j3
" +•-

[Clare Coll. Camb.]

H. H.A. 33
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223. Solve the equations

:

(1

)

.r
2+ 2yz= if-+ 2z.r=g»+ %xy+ 3= 7G.

(2) .v+y+ z= a+ b+ c

? + f +
S
- = 3

a b c

ax+ by + cz= bc+ ca + ab
-

[Christ's Coll. Camb.]

224. Prove that if each of m points in one straight line be joined

to each of n in another by straight lines terminated by the points, then,

excluding the given points, the lines will intersect -mn{m-\){n—\)

times. [Math. Tripos.]

225. Having given y= x+ x1 + r>, expand x in the form

y + ay2+ by3+ eyi + dys+ ;

and shew that a2d- 3abc+ 2b3= - 1. [Ball. Coll. Ox.]

226. A farmer spent three equal sums of money in buying calves,

pigs, and sheep. Each calf cost £1 more than a pig and £2 more
than a sheep ; altogether he bought 47 animals. The number of pigs

exceeded that of the calves by as many sheep as he could have bought

for £9 : find the number of animals of each kind.

227. Express log 2 in the form of the infinite continued fraction

1 1 2 2 32 n2

1+ 1+ 1+ 1+ 1 +
[Euler.]

228. In a certain examination six papers are set, and to each are

assigned 100 marks as a maximum. Shew that the number of ways

in which a candidate may obtain forty per cent, of the whole number
of marks is

II (1245 1144 143) r~ ,
f -,

!— ;

'

_ r
'

. i \ = >

.

[Oxford Mods.]
[5 {[240

6<
[139

+ll>
-|38j

L J

229. Test for convergency

x 1JJ x* 1.3.5.7 x*_ 1.3.5.7.9.11 x*_

2
+ 2.4"6" + 2.4.6.8

,

10
+
2.4.G.8.10.12* 14

+

230. Find the scale of relation, the nth term, and the sum of n
terms of the recurring series 1 + 6 + 40 + 288 +

Shew also that the sum of n terms of the series formed by taking

for its rth term the sum of r terms of this series is

4 (2*- 1)

+

i (2* - 1) -^ . [Caius Coll. Camb.
]
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231. It is known that at noon at a certain place the sun is hidden
by clouds on an average two days out of every three : find the chance
that at noon on at least four out of five specified future days the sun
will be shining. [Queen's Coll. Ox.]

232. Solve the equations

x2 + (j/ -z)
2= a2 ^

y
2 + (z — x)2— b2

z2+ {x - i/)2= c2

233. Eliminate x, ?/, z from the equations

:

x2— x<i—xz y2 -yz — yx z2 -zx — zii . 72 =s* S—^— = k
, and ax+ by + cz= 0.

a b c
J

[Math. Tmros.]

234. Tf two roots of the equation .v5+px2+ qx+ r= be equal and
of opposite signs, shew that pq= r. [Queens' Coll. Camb.]

235. Sum the series :

( 1 ) 1 + 2\v+ 3V2 + + ?ih;n ~ \

25 52 5?i2 +12/i + 8
\ ) 12 o.{ o:? ~i" o3 o3 Tx* "•

is.23.33 ' 22 .33 .43 ' w2 (w+1)3(tH-2)3
*

[Emm. Coll. Camb.]

236. If (1 +«V) (1 + a\i*)(l + a°xlc
>)(\ +a*x**)

= l+A
i
x4+A 8

x8+A l2x
l2 +

prove that A gn + i
= (rA Sn} &ndA 8n= a2nA in ; and find the first ten terms

of the expansion. [Corpus Coll. Camb.]

237. On a sheet of water there is no current from A to B but a
current from B to C ; a man rows down stream from A to C in 3 hours,

and up stream from C to A in 3^ hours ; had there been the same cur-

rent all the way as from B to C, his journey down stream would have
occupied 21 hours ; find the length of time his return journey would
r ave taken under the same circumstances.

238. Prove that the ?i
th convergent to the continued fraction

3 3 3 . 3» +1 + 3(-l)" +1
is

2+ 2+ 2+ 3»+1-(-l)*+1 *

[Emm. Coll. Camb.]

239. If all the coefficients in the equation

xn+px
xn~ 1+p2

xn ~ 2+ +pn =f(x) = 0,

be whole numbers, and if/(0) and/(l) be each odd integers, prove
that the equation cannot have a commensurable root.

[London University.]
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240. Shew that the equation

is]ax+ a+ \]bx+ /3+ *Jex+ y=

reduces to a simple equation if fJa± s/b± fJc= 0.

Solve the equation

\f6x2 - 1 5.i- - 7+ V4.r2 - 8x - 1 1 - \/2x2 - 5#+5= 2#- 3.

241. A bag contains 3 red and 3 green balls, and a person draws
out 3 at random. He then drops 3 blue balls into the bag, and again

draws out 3 at random. Shew that he may just lay 8 to 3 with
advantage to himself against the 3 latter balls being all of different

colours. [Pemb. Coll. Camb.]

242. Find the sum of the fifth powers of the roots of the equation

at - lx2+ 4x - 3= 0. [London University.]

243. A Geometrical and Harmonica! Progression have the same

p
tYl

, q
th

, r
th terms a, b, c respectively : shew that

a(b-c)\oga + b (e-a) log b+ c(a-b)\ogc= 0.

[Christ's Coll. Camb.]

244. Find four numbers such that the sum of the first, third and
fourth exceeds that of the second by 8 ; the sum of the squares of the
first and second exceeds the sum of the squares of the third and fourth
by 36; the sum of the products of the first and second, and of the
third and fourth is 42 ; the cube of the first is equal to the sum of the
cubes of the second, third, and fourth.

245. If Tw Tn + l , Tn+2 be 3 consecutive terms of a recurring series

connected by the relation Tn + fi

=aTn + l
— bTn ,

prove that

1 {T\ + 1
-aTnTn + 1+ bTn*} =a constant.

246. Eliminate x, y, z from the equations

:

1+-+- =-, .r*+y2+ 2= Z>
2

x y z a

Xs+ y
3 + z3 = c3

,
xyz= d3

.
i

[Emm. Coll. Camb.]

247. Shew that the roots of the equation

x* — px3+ ox2 - rx + —„=

are in proportion. Hence solve .r4 — 1 2.r
3+ 47.^2 — 72.r+ 36= 0.
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248. A can hit a target four times in 5 shots; U three times in 1

shots; and twice in 3 shots. They fire a volley: what is the pro-
liability that two shots at least hit? And if two hit what is the pro-
bility that it is C who has missed? [St Cath. Coll. Camb.]

249. Sum each of the following series to n terms:

(1) 1+0-1+0 + 7 + 28 + 70+
;

(2)
2-2

,

l-»
,

6- 23
,
»»

. .

I.2.3.4
T
2.3.4.5

T
3.4.5.6

T
4.5.6.7 '

(3) 3 + x+ 9x*+ x3+ 33x* + a* + 1 29^ ; +
[Second Public Exam. Ox.]

250. Solve the equations

:

(1) y
2 +yz + z2 =ax,\ (2) x(g + z-x) = a,

z
2+ zx+ x*= ay, I y(z + x -y) = b,\

x2+ xy+y2 = az.) z (.</+y - z) = c.

[Peterhoisk, Camb.]

251. If—h t + = 1— , and a is an odd integer, shew that
a b c a+b+c J °

111 1
+ 7-„ + - =

aH bn cn an+ bn+ cn
'

If u6 - vG + 5 tt¥(«2 - v2
) + 4md (1 - u*v*) = 0, prove that

(w2-v2)6=16^V(l-w8)(l—p8). [Pemb. Coll. Cai ..

252. If x+y-\-z=3p
J
yz+ zx+ xy = 3q, xyz = r, prove that

(y+ z - x) (z+ x - y) (x+y - z)= - 27js3 + 36pg - 8r,

and (.'/

+

2 ~" x)
3 + (s+#— y)

3+ (#+# - *')
3= 27j93 - 24/-.

253. Find the factors, linear in x, y, z, of

{a (b + c) x2 + b(c+ a)y2 + c(a + b)

z

2
}

2 - Aabc (x2 +y2+ z2)(ax2+ by2+ cz2).

[Caius Coll. Camb.]

254. Shew that (— J
I >.r*yy.s»>( ^ )

\ x+y+z

J

J
\ 3 J

[St John's Coll. Camb.]

255. By means of the identity \l - ,
' ,„

- " = =—- ,
prove that

r=n

*
r=1<

1;
r!(r-l)!(»-r)! "

[Pemb. Coll. Camb.]
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256. Solve the equations

:

(1) ax-\-by+z=zx-\-ay-\-b=yz+ bj. + a = 0.

(2) x -fy +z ~u= 12,\
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263. A farmer bought a certain number of turkeys, geese, and
ducks, giving for each bird as many shillings as there were birds of

that kind; altogether he bought 23 birds and spent £10. 11*.; find

the number of each kind that he bought.*o*

264. Prove that the equation

(y+z-8xfi+(z+x - §y)i+(#+y - 8^ = 0,

is equivalent to the equation

[St John's Coll. Camb.]

265. If the equation H . = 1 , have a pair of1 x + a x+b x+ c x + d L

equal roots, then either one of the quantities a or b is equal to one of

the quantities c or d, or else - + r = - + - Prove also that the rootsabed
are then - a, — a, : - b, — b, ; or 0, 0, , .

' ' ' ' a + b

[Math. Tripos.]

266. Solve the equations :

(1) x+y + z = ab, x- l +y- 1 + z- l = a- 1
b, xyz=az

.

(2) ayz + by + cz= bzx+ cz + ax= cxy + a. >;+ by= a + b + c.

[Second Public Exam. Oxford.]

267. Find the simplest form of the expression

+ >„ „„ * —̂

,

+ ...
(a-j8)(a-y)(a-*)(a-*) (0- a)((3 -y)(/3 - S)(/3 - c)

^_+
(*-«.)(« -/3)(e- 7)(e- 8)

'

[London University.]

268. In a company of Clergymen, Doctors, and Lawyers it is

fcund that the sum of the ages of all present is 2160; their average
a;e is 36; the average age of the Clergymen and Doctors is 39; of the

1 octors and Lawyers 32^; of the Clergymen and Lawyers 36f. If

each Clergyman had been 1 year, each Lawyer 7 years, and each
Doctor 6 years older, their average age would have been greater by
5 years : find the number of each profession present and their average
ages.

269. Find the condition, among its coefficients, that the expression

ciyX*+ Aa^xhf + Ga.s v-y- + -i't...ry3+ «
4<y

4

should be reducible to the sum of the fourth powers of two linear

expressions in x and y. [London University.]
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270. Find the real roots of the equations

x2+ v2 -\-w2=a2
, vw-hu{y + z)=^bc,

y
2
-fw2+ u2 = b2, wu+ v (z+x)=ca,

z2 +u2 +v2 =c2
, uv + w(x+y)=ab.

[Math. Tripos.]

271. It is a rule in Gaelic that no consonant or group of consonants

can stand immediately between a strong and a weak vowel ; the strong

vowels being a, o, u ; and the weak vowels e and i. Shew that the

whole number of Gaelic words of n + 3 letters each, which can be formed

2 1 ft+ 3
of n consonants and the vowels aeo is —-—— where no letter is re-

ft+2
peated in the same word. [Caius Coll. Camb.]

272. Shew that if x2 +y2= 2z2
, where x, y, z are integers, then

2x= r{l2+ 2lk-k2
), 2y= r(k2+ 2lk-l2

), 2z=r(l2+ k2
)

where r, I, and k are integers. [Caius Coll. Camb.]

273. Find the value of

274. Sum the series :

112 4 6
to inf.

1+ 1+ 3+ 5+ 7+
"

[Christ's Coll. Camb.]

(1)

»-2 2.1-3 3.^ . B+ -— + -—
- + to inf.

2.3 3.4 4.5

|1 [2
(2) -^ + + +

[ft

(a + l)(a + 2)...(a+ n)a+l (a+ l)(a+ 2)

275. Solve the equations :

(1) 2^+ 3= (2^-l)(3y+ l)(42-l) + 12

= (2x+l)(3y- l)(4g + l)+ 80= 0.

(2) 3ux -2oy= vx+ uy= 3u2+ 2v2= 14 ; xy= 10«v.

276. Shew that a2 + \ ab ac ad
ab b2+ X be bd

ac be c2+ X cd

ad bd cd d 2+ \

is divisible by X3 and find the other factor. [Corpus Coll. Camb.]
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277. If c, b, c,... are the roots of the equation

find the sum of os+6s+c8+..., and shew that

a" b'
2 a* c

2
I/
2 c2 Pn-iOr -2/*.,)

£> (t c a c b
J

2>n

[St John's Coll. Camb.]

1 + 2a'
278. Hy the expansion of j , or otherwise, prove that

(3m -1) (3m -2) (3/t-2)(3/t-3)(3w-4)
l-3»+ j-g lT 273

+ "
1.2.3.4

-cVo.-(-l),

wlien n is an integer, and the series stops at the first term that vanishes.

[Math. Tripos.]

279. Two sportsmen A and B went out shooting and brought
home 10 birds. The sum of the squares of the number of shots was
2880, and the product of the numbers of shots fired by each was 48
times the product of the numbers of birds killed by each. If A had
fired as often as B and B as often as A, then B would have killed 5

more birds than A : find the number of birds killed by each.

280. Prove that 8 («
3+ 6s+ c3

)
2 > 9 (a2+ be) (b2+ ca) (e*+ ab).

[Pemb. Coll. Cams.]

281. Shew that the nlh convergent to

2 4 6 . _ 2» +1
... is 2-3- 4- 5- '" 2»2 r (n-r)\ '

What is the limit of this when n is infinite? [Kino's Coll. Camb.]

282. If — is the ?i
th convergent to the continued fraction

111111
a+ b+ c+ a+ b+ c-\-

shew that p3n + 3
= bp3n + (bc+l)q3n. [Queens' Coll. Camb.]

283. Out of n straight lines whose lengths are 1, 2, 3, ...n inches
respectively, the number of ways in which four may be chosen which
will form a quadrilateral in which a circle may be inscribed is

-L {2n (/i - 2) (2* - 5) - 3 + 3 ( - 1 )"} . [Math. Tripos.]
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284. If u
2 , u3

are respectively the arithmetic means of the squares

and cubes of all numbers less than n and prime to it, prove that

?i
3 — 6nu2+ 4m3

= 0, unity being counted as a prime.

[St John's Coll. Camb.]

285. If n is of the form &m - 1 shew that {y - z)n+ (z- x)n+ (x - y)
n

is divisible by x2+y2+ z2 -yz — zx-xy; and if n is of the form 6m +1,
shew that it is divisible by

(x2+

y

2+ z2 -yz — zx — xy)
2
.

286. If S is the sum of the mth powers, P the sum of the products

m together of the n quantities alt a
2 , a3 , ... a n , shew that

\

n- 1 . S>
!
n - m . \jm . P.

[Gaius Coll. Camb.]

287. Prove that if the equations

x3+ qx-r = and rx3 — 2q2x2 — 5qrx — 2q3 — ?'2=Q

have a common root, the first equation will have a pair of equal roots

;

and if each of these is a, find all the roots of the second equation.

[India Civil Service.]

288. If x V2a2 - Sx2+y */2a2 -Sy2+ z \/2a2 - 3z2= 0,

where a2 stands for x2 +y'+ z2
,
prove that

(x+y + z)(-x+y + z)(x-y+ z)(x+y-z) = Q.

[Thin. Coll. Camb.]

289. Find the values of x
{ , x2 , ...xn which satisfy the following

system of simultaneous equations

:

til /C\)

a
x
- b

x
Oj — b

2

x\
+

X.,

a1 ~ W Cl
2
~~ ^2

a
x
-bn

~

- +...+
Xr,

a
2
- bn

h

OC-%

+
an - bx

an - bo
+ ...+

x,

an ~ K
[London University.]

290. Shew that yz - xl zx - y
L xy - z-

zx - y
2 xy -z2 yz- x*

xy — z 2 yz — x2 zx - y
2

where r2= x2+y2 + z2, and u2=yz+ zx + xy.

r2
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291. A piece of work was done by A, B, C\ at first A worked alone,

lmt after some days was joined by />', and these two after sonic days
were joined by C. The whole work could have been done by II and (",

if they had each worked twice the number of days that they actually

did. The work could also have been completed without B'h help if A
had worked two-thirds and ('four times the number of days they actually

did; or if A and B had worked together for 40 days without C; or if

all three had worked together for the time that B had worked. The
number of days that elapsed before B began to work was to the

number that elapsed before C began to work as 3 to 5 : find the

number of days that each man worked.

292. Shew that if >S'r is the sum of the products r together of

l

then o H _ r = /6
(

. .
.'-

[St John's Coll. Camb.]

293. If a, b, c are positive and the sum of any two greater than
the third, prove that

'^'T(»t)'('*"-"i'«'
[St John's Coll. Camb.]

294. Resolve into factors

(a + b+c)(6+ e- a) (c + a - b) {a+ b-c) (a2 + ¥+ c8) - 8a2b-c2 .

Prove that

4{a4+ /y
4 + y1 + (a+ ^-ry) t}=(/3 + y)

4 + (y + a) l + (a+ i3)
4

+ 6(^ + y)
2
(y+ a) 2 + 6(y + a)2 (a + /i{)

2+ 6(a +^(^+ y)-.

[Jesus Coll. Camb.]

295. Prove that the sum of the homogeneous products of r dimen-
sions of the numbers 1, 2, 3, ... w, and their powers is

L^L.M_^, 2,,.-^(^;)(;-^3^M,,,, t0ittcnJ
[Emm. Coll. Camb.]

296. Prove that, if n be a positive integer

i-fc+»?yq-*, <»tr??t~ B)
+""»(-»>'-

[Oxford Mods.]

297. If x(2a -.»/)=.?/ (2a-z)= z (2a-u)=n (2a-#)= 6*, shew that

x=y= z= u unless o2=2a2
, and that if this condition is satisfied the

equations are not independent. [Math. Tkipos.]
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298. Shew that if a, b, c are positive and unequal, the equations

ax+yz+ z = 0, zx+by+z=Q, yz+zx+c=0,

give three distinct triads of real values for x, y, z ; and the ratio of the
products of the three values of x and y is b (b - c) : a {c- a).

[Oxford Mods.]

299. If A = ax -by-cz, D=bz+ cy,

B=by-cz- ax, E= ex+ az,

C= cz- ax - by, F= ay+ bx,

prove that ABC- AD2 - BE? - CF2+2DEF
= (a2 + b2+ c2) (ax+ by + cz) (x2+y2+ z2).

[Second Public Exam. Oxford.]

300. A certain student found it necessary to decipher an old
manuscript. During previous experiences of the same kind he had
observed that the number of words he could read daily varied jointly
as the number of miles he walked and the number of hours he worked
during the day. He therefore gradually increased the amount of daily
exercise and daily work at the rate of 1 mile and 1 hour per day
respectively, beginning the first day with his usual quantity. He found
that the manuscript contained 232000 words, that he counted 12000
on the first day, and 72000 on the last day ; and that by the end of half
the time he had counted 62000 words : find his usual amount of daily
exercise and work.
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4 11, 5. 5 : 13. 6. 5 : 6 or - 3 : 5.

10.
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-

(i

9
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' 10> 10
'

2ft
'
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s(.r»-l) n(n+l) a .r=(.r5»-l) a7/ (x"//" 1

)

*-l 2 x--l xy-1
*
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9
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1
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1

1
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g
.

5 4 1 2 3 1 5

7. 33 + 33 . 2^+3 . 2 + 33
. 22+ 3:1

. 22 + 22.541322 145
8. 56 - 56 . 23+ 56 . 23- 56 . 2 + 56 . 23 - 23".

11 10 19 1 110 11 21
9. a6 -a66*+a%2"-...+a«6*-6 4

. 10. 3*+3»+l.
1 13

11. 23 -22 .74+2.72"-74~.

11 10 1 2 1 10 11 21
12. 53+53 . 34 + 53

. 34 +. ..+53.34 +3*. 1-33 + 33

5 3 4 5 2 17 2
14. 17-33.22 + 33.22 -3. 22 + 33.23-33.22.

15 4 3 2 5 1

15. 32 . 22- 33 . 2 + 33 . 22- 3 . 22 + 33 . 22- 33 . 23.

|S&4 33 1\ 31262116 11

16 .
i(36_36 + 36_ 36+36_ 1 \ 17# 25 +26+2 6 +26+26+2 6 + l
2 \ J gj

.

3 5 1

18.
32 + 8

Q

6 + 86
. 19. v/5 + ^7-2.

o

20. V5 -\/7 + 2^3. 21. 1+^/3-^/2. 22. * + aA " 4/^ •

23. 2 + Ja-JSb. 24. 3 - ^7 + ^2 -
<J3. 25. 1 + ^/3.

26. 2 + ^/5. 27. 3-2^/2. 28. JU-2J2.

29. 2^/3 + ^/5. 30. 3^/3-^/6. 31. a/^^+a/|-

35. ll + 56 x/3. 36. 289. 37. 5v/3 -
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38. 3^3 + 5. 39. 3. 40. 8^3.

41. 3 + ^/5 = 5-23007. 42. a^+l+^+a x^/2 s 2.

43. Sa+Jlr^^r.

1. 0-2^/6.

4. .i- - x + 1

.

_8_
7

- 29*

10.
3a2 - 1

44.
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IX. c. Page 96.

1. -2. 2. ±7. 5. (ln'-l'nf=(lm'-l'm)(mn'-m'n).

7. (aa' - bb'f + 4 (ha' + Jib) (Jib' + Ji'a) = 0.

10. \bb' - 2ac' - 2a'c)
2= (b2 - 4ac) (b'2 - 4a'c') ; which reduces to

(ac' - a'c)2= (ab' - a'b) (be' - b'c).

X. a. Pages 101, 102.

1.
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X. b. PAGES L06, 107.

8 15 „ 8 97
1. *=5, -p y=4, -—

.

2. x = 2, -_ ,, .7, -
vy

3. *=1, - —
; y = l, -^. 4. .i= ±o, ±3

; y = ±3, ±5.

5. .r= 8, 2; y= 2, 8. 6. .r = 45, 5; y = 5, ]:,.

7. x=9, 4; y=4, 9. 8. x = ±2, ±3; 7/= ±1, ±2.

9. .r= ±2, ±3; ?/= ±3, ±4. 10. x=±5, ±3; y=±3, ±J.

11. s=±2, ±1; y=±l, ±3.

12. ^±^,±^^=0,^6^/1.
13. ar=5, 3, 4± v/-^7 ; !/ = 3

>
5

> 4=f>/-97'

14. a?=4, -2, ±JS/~15 + l; y=2, -4, ±„/~15-l.

15. .r = 4, -2, d= v
r-ll + l; y=2, -4, ±J -11-1.

4 1
16. .t'=r> ~;y = 20, 5. 17. as=2, 1; y=l, 2.

o o

18. s=6, 4; y=10, 15. 19. x= 729, 343; y = 343, 729.

20. a;=16, 1; y=l, 16. 21. x = 9, 4; ?/=4, (
J.

5 2
22. #= 5; y =±4. 23. x= l, ~ ; y = 2, -.

24. .r = 9, 1; y = l, 9. 25. <r= i25; y = ±9.

26. *=6, 2,4,3; y = l, 3, |, 2.

27. x=±5, ±4, ±-, ±2; y=±5, ±4, ±10, ±8.

; 107 , 48
28. a.^— ;^!,-.

. 1 +^143 1± 3^/^143
29. a:= - 6, —5L-

'> V- ~ 3
> 4—— •

30. .r = 0, 9, 3; y=0, 3, 9. 31. .c= 0, 1, ^ ; y=0, 2, ^.

32. *=5,|,0; y=3, -^' ~f

'

33> * = 2, •Vl, 2; T/---2, 2-/4, 6.

s*- *=i.V^;y=2,3^/i.

35. #=±3, ±^-18; y=±3, =f v/-18.

36. .r=?/=±2.

37. x=o, >/a
,
^/rt

• „=0 -^* --£^

tr a (26 -a) _//-' ((Sa-

fe
• '

b
;

y

~u ' ~T

34—2
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40. x= 0, ±« x/7, ift^/13, ±3a, ±«; y = 0, ^bs/7, ±6^/13, T &, T 36.

2a2 „ a
41. #= ± 1, ± . ; ?/ = ± 2a, = . .

,716a4 -a8 -1 V16*4 -"2 - 1

X. c. Pages 109, 110.

1. x= ±3; ?/ = ±5; z— ±4. 2. # = 5; ?/ = - 1; 2 = 7.

3. af=5, -1; y= lf
— 5; «=2. 4. #= 8, -3; ?/ = 3; 2 = 3, - 8.

. 2±Vi5i _ . 2=7151 11
5. .x = 4, 3, ^ ; y = S, 4, 1 ; 2 = 2, -—

.

6. x = ±3; ?/ = t2; 2= i5. 7. jr= ±5; y= ±1; «== ±1.

8. #= 8, -8; y = 5, -5; 2 = 3, -3. 9. .c = 3; ?/ = 4; 2= -; w= -.
a o

10. *=1; ?/ = 2; 2= 3. 11. .r = 5, -7; y = 3, -5; 2 = 6, -8.

11

3
'12. .t=1, -2; ?/ = 7, -3; 2= 3,

13. # = 4, — ; */ = 6, —; 2 = 2, -6. 14. .r= a, 0, 0; y = 0, a, 0; 2 = 0, 0, a.

^-^3' " 3
' a -

16. «=a, -2a, ^ a; y = ±a, a, - ^ a;

2 = 2a, -4a, (l± v/-15) a.

X. d. Page 113.

1. z = 29, 21, 13, 5; y = 2, 5, 8, 11.

2. a?=l, 3, 5, 7, 9; 2/ = 24, 19, 14, 9, 4.

3. ar-20, 8; y= l, 8. 4. a?=9, 20, 31; y= 27, 14, 1.

5. # = 30, 5; ?/=9, 32. 6. .t = 50, 3; y = 3, 44.

7. x=7p-5, 2; y=5p-4, 1. 8. s=l$p-2, 11; y=6p-l, 5.

9. .t= 21^-9, 12; y = 8p-5, 3. 10. -£ = 17/), 17; ?/ = 13^, 13.

11. x= 19p-W, 3; ?/ = 23^-19, 4. 12. x = llp- 74, 3; y = 30p-25, 5.

13. 11 horses, 15 cows. 14. 101. 15. 56, 25 or 16, 65.

16. To pay 3 guineas and receive 21 half-crowns.

17. 1147 ; an infinite number of the form 1147 + 39 x 56p.

18. To pay 17 florins and receive 3 half-crowns.

19. 37,99; 77,59; 117,19.

20. 28 rams, 1 pig, 11 oxen; or 13 rams, 14 pigs, 13 oxen.

21. 3 sovereigns, 11 half-crowns, 13 shillings.
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XI. a. Tacks 122—12-4.

1. 12.

4. 6720.

8. 6.

12. 1440.

2. 221.

5. 15.

9. 120.

13. 6375G00.

3. 40320, 0375600, 10626, 11628.

6. 40320; 720. 7. 15, 860.

16. 1140, 231. 17. 144.

20. 56. 21. 360000.

24. 21000. 25. yJ^-p.

29. 2903040.28. 9466.

33. 1956.

10. 720.

14. 360, 144.

18. 224, 896.

22. 2052000.

26. 2520.

30. 25920.

11. 10626, 1771.

15. 230300.

19. 848.

23. 3(19600.

27. 5700.

32. 41.

34. 7.

XL b. Pages 131, 132.

1. (1) 1663200. (2) 129729000. (3) 3326400.

3. 151351200. 4. 360. 5. 72.

7. nr. 8. 531441. 9. V
n

.

11. 1260.

15. 4095.

19. 127.

12. 3374.

16. 57760000.

20. 315. 21.

13. 455. 14.

2. 4084080.

6. 125.

10. 30.

yunrwr

'

17. 1023. 18. 720; 3628800.

inn
22. 64; 325. 23. 42.

24. (1) *Ji£l>-i<£zi>+ l; (2)

{\m)n \ii

'

' P(p-l){p- e
<

6 6

3>(g-l) (p-2) _ g(g-l)(g-2)
, !

6 6

27. 113; 2190. 28. 2454.

hi. 26. (p+ l)*-l.

29. 6666600. 30. 5199960.

XIII. a. Pages 142, 143.

1. «« - 15a;4 + 90a;3 - 270.r2 + 405a; - 243.

2. 81a:4 + 216a;3 // + 216.r-// 2 + 96.r?/3 + 16//
4

.

3. 32.c5 - 80x*y + 80.r3y° - 40.r-y3 + lO.r// 4 - if.

4. 1 - 18rt 2 + 135a4 - 540« G + 1215a8 - 1458a10 + 729aM.

5. a;
10 + 5a;9 + 10a;8 + 10a;7 + 5a;6 + a;

5
.

6. 1 - 7.iv/ + 2 la;2 */
2 ~ 35a;3*/

3 + 35a;V - tlxhf + 7«V - x7'f'

81a;8

7. 16-48a;2 + 54arl -27.c6 +
16

8. 729o« - 972a 5 + 540a4 - 160a3+^ -^ +~
Ix 21x2 35a;3 35a;4 21xn 7xG x7

9 1+T +
~T~ ~8_ +

l<T
+ ~32~ + 64

+ 128"
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64a;
6 32a;4 20a-

10
* 729~~2~r

+ ^~
135 _ 243 729

+
4a;2 8a;4

+
64a;6

'

1 a 7ft2 7ft3 35ft4 n _ _ , . _ _

11. ^T^ + ytv + t? +^T +—5~ + 7ft5 + 7ft6 + 4ft7 + ft
8
.

2ob lb lb 4 8

, 10 45 120 210 252 210 120 45
12. 1-— + -Z 5- + —- r +— ^ +

a' X' X x*

14.

a;
1 xv

13. - 35750a:10
.

130

16. J~(5a;)3
(8?/)-

7
. 17.

19.

;27|3_

10500

a:
3

- 112640a 9
.

40ft763 .

20.
70x6

y
10

22. 2x (16a;4 - 20a;2ft2 + 5ft
4
).

24. 2 (365 - 363a; + 63a;2 -a;3
). 25. 252.

27. 110565ft4
.

30.

33.

189ft17 21

8 '"I6
a

In

19

28. 84ft3&6 .

7
18*

31.

|i(»-r)!4(H + r)'

x:8

15.

18.

21.

23.

26.

29.

32.

,.io
*

10

iC
9 x
- 312a;2

.

1120

81
MK

2x4+ 24a;2 + 8.

140^2.

-^a;14

1365, -1365.

18564.

34. ( - 1)»
Bn

|»| 2/i*

XIII. b. Pages 147, 148.

1. The 9th
. 2. The 12th

. 3. The 6th . 4. The 10th and 11*.

5. The3rd= 6|. 6. The 4 th and 5th=Jrj> 9. x= 2, ?/ = 3, n=5.

10. 1 + 8.r + 20a;2+ 8a;3 - 26a;4 - 8.r
5 + 20a;6 - 8a;7 + x\

11. 27a;6 - 54«a;5 + 117ft2a;4 - 116«3
.c
3 + 117ft4a;2 - 54ft5a; + 27ft6 .

12.

n

r-1 n-r+1
xr-ian-r+l.

14. 14.

I2n+1
13. (- l)p -

? , „., - z*>-*"+\
p + 1 2n -p

15. 2r= n.

XIV. a. Page 155.

_ -2 3
2 __8_3> 5* 25* 125

5. 1 - x - a;
2 - - a;

3
.

o

7. l-aj+ga^-g^3
-

9
-
1+X+ 6-U-

x-

3 3 „ 1
2. i +

2
a- + _a;-__a:-.

4. l-2a;2 + 3a;4 -4a;6
.

14
6. l + a; + 2a;2+— a;

3
.

o

8. 1 — a; + ;r a;
- —— ar

.

10. l-2ft + -ft- «r
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U. 4(l+.-|..+|..). !4. i(l + * + §*«+|«»).

2a -i \ a 2 a- 2 </••/ lb 250

1040 ._ 10//
18. - lr a« 19.

2
-
43rt

,. 20. (r + 1)**

(r + l)(r+2)(r + 3) 1 . 3 . 5 ... (2r-3)
21-

x 2 3
a?-. 22. (-1) _

r

23 ( lr_,
11.8 . 5.2 .1 .4,..(3r-14)

»' I *J 3r|r
*•

10719
24. -1848.1 13

. 25. -i^-z<\

XIV. b. Pages 161, 162.

1.3.5.7...(2r-l) (>• + !) (
r + 2)(r + 3)(r + 4)

*• [
x

> ^y •
•

p
•

3
^1.2.5... (3r-4)^,

4>
2.5.8. ..(8r-l)

t 3'- r
xr

.

xr
.

5 /_nrfe±llt±2) r-r fi

3.5.7... (2r + l)
*•{-*)

^_

*~. 6. -

br r + 1

2 .1.4...(3r-5) ^ 1.3.5... (2,-1)
9<

3'lr V>--'
U

" [ }
\r

2.5.8... (3r-l)
r

(n + l)(2n + l)... (r-l.» + l) .r
r

13. The 3**. 14. The 5 th
. 15. The 13 th

. 16. The 7 ,h
.

17. The 4th and 5*h . 18. The 3 r<1
. 19. 989949.

20. 9-99333. 21. 10 00999. 22. G- 99927. 23. -19842.

24.
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/ 2\-'v / 1VH |2n

14. Deduced from (1 - a;
3
) - (1 - #)3= 3:r - 3.r2 . 16. (1) 45. (2) 6561.

18. (1) Equate coefficients of xr in (1 + x)n (1 + re)- 1 = (1 + x)9^1
.

(2) Equate absolute terms in {l + x)n f1 + -
) =z2 (l + o;)

n- 2
.

20. Series on the left + (
- 1)» q n

2= coefficient of x-n in (1 - .t
2)-* .

1 |2w
21. 22"-1 - J

2 ' In ire

[Use (c +c1+ c2+ .. .c

J

2 - 2
(Coc, + clCs + ...) = c 2 + Cl

2 + c2
2 +. . .cn

2
].

XV. Pages 173, 174.

1.
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XVI. b. Pages 185, 186.

1. 4,1,2,2,1,1,1.

2. -8821259, 2-8821259, 3-8821259, 5-8821259, 6-8821259.

3. 5, 2, 4, 1.

4. Second decimal place ; units' place ; fifth decimal place.

5. 1-8061800. 6. 1-9242793. 7. 1-1072100. 8. 2*0969100.

9. 1-1583626. 10. -6690067. 11. -3597271. 12. -0503520.

13. f-5052973. 14. -44092388. 15. 1-948445. 16. 1915631.

17. 1-1998692. 18. 1-0039238. 19. 9-076226. 20. 178-141516.

21. 9. 23. 301. 24. 3-46. 25. 4-29. 26. 1-206. 27. 14-200.

28. 4-562. 29. .-_£«». fr-
loS 2

log 3 -log 2' J log 3 -log 2'

31og3-21og2 log3 , .,«*,

32. ££-««, ?,

l0g

J = 5-614.
2 log 7 log 2

XVII. Pages 195—197.

1. log, 2. 2. log, 3 -log, 2. 6. -0020000000666670.

9. e*~-cy~. 10. -8450980; 1-0413927; 1-1139434. In Art. 225 put

7i= 50 in (2) ; ?* = 10 in (1); and ?i = 1000 in (1) respectively.

12 .
(
. lr..r±i>. 13 .

<- 1
»

r"'3r+ 2r
^.

r r

„ L (2.r)
2 (2x) 4 (2x)-r )

14. 2 ji +^. + i_X+ ... +i_^+ ...{.

/>»- /)»4 /y»6 /y»*-7* ,*•

H"
1"

1L~ 11-
} E 1^+iog.a-*).

24. -69314718; 1-09861229; 1-60943792; a= -log, (l - M =-105360516;

b = - log, ( 1 -A^ - -040821995 ; c = log, f 1 + iA = -012422520.

XVIII. a. Page 202.

1. £1146. 14s. 10J. 2. £720. 3. 14-2 years.

4. £6768. 7s. 10hd. 5. 9-6 years. 8. £496. 19*. 4frf.

9. A little less than 7 years. 10. £119. 16s. 4^7.

XVIII. b. Pack 207.

1. 6 percent. 2. £3137. 2s. 2U. 3. £110.

4. 3 per cent. 5. 28J years. 6. £1275. 7. £920. 2s.

8. £6755. 13s. 9. £183. 18s. 10. 3} per cent. 11. £616. 9s. l£d
13. £1308. 12s. 4 U. 15. £4200.
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XIX. a. Pages 213, 214.

8. a3 + 2&3 is the greater. 12. xs> or < #2 + x + 2, according as x > or < 2.

14. The greatest value of x is 1. 15. 4 ; 8.

22. 44
. 55

; when x = 3. 23. 9, when #=1.

XIX. b. Pages 218, 219.

, n 33 .55
. /3 3/2
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5. x<l, convergent; x >1, or x-1, divergent. 7. Divergent,

1 1 1 ,.
8. x<- y

convergent; x> - , or x — , divergent.
e e e

9. x<l, convergent; x>l, divergent. If x = l and if 7~a-/3 is positive,
convergent ; if y- a - (3 is negative, 01 zero, divergent.

10. .r<l, convergent; .r>l, or x = l, divergent. The results hold for all

values of q, positive or negative.

11. a negative, or zero, convergent; a positive, divergent.

XXII. a. Page 256.

l. -n(4n«-l). 2. jn(n+l)(n+2)(n+3).

3. in(n+l)(n+2)(3n+5). 4. ?t
2 (2n2 -l).

5. in(w + l)(2/i + l)(3»2 + 3»i-l). 6. p3^ 2
.

7. & 3= 27a2
<Z, c*=27acP. 8. ad=bf, 4a%-0»=8ay.

13. flic + 2/^ft - a/2 - 6jy
3 - c/i2= 0.

XXII. b. Page 260.

1. l + Zx + 4x2 + 7xs
. 2. l-7x-x2 -4Zx:i

.

1 1 3 „ 1 , 3 5 11 , 21 .
3. - +

l
x-- x- +- X3. 4. - + - X+s- X2+mX .,.

5. 1 - aX + a (a + 1) x* - (a3 + 2a 2 - 1) X3
.

6. a = l, b = 2. 7. « = 1, &=-l, c = 2.

9. The next term is + -00000000000003.

11.
an

(1 - a) (1 - a2
) (1 - a3

) (1 - a")
*

XXIII. Pages 265, 266.

4 5 7 5 4
!• i «r^ — ^ n • *• « i. — }

?; • 3.
l-3.c 1-2.T* ' 3.r-5 4x+H' l-2x 1-x'
2 3 4 ,11 8

4. zr + -n ^. 5. 1+--
X-l x -2 a:

-3'
.r 5 (x - 1) 5(2.r + 3)

1 1 3

.t - 1 a: + 2
"
(x + 2)

2
'

17 11 17
7. x-2 +

8.

16(s+ l) 4(.c+l) 2 1(5 (x- 3)*

41.r + 3 15 3.r

X*+l x + 5' '
.r
2 + 2.r-5 .r-3"

5 7 13
10. -, TTl-7—7T,+

(*-!)« (.l•-l)
;,T

(.r-lf
T I-l ,
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1 1 3 3

X-l X + l {x + l)2 {X + 1)3 {X+l)*'

12
' BiiWsoW ±Pn-r-4n*.

13 _il 4
•

1
flll(-

1>'-Vld
• 3(1-*) 3(2 + *)' 3\ +

V~* J
'

1 +
3(* + 5) 3(x + 2)' 1

' 3V5'-
+1 2^+V

15. -L. - -1_ - ,-4-
5 {1+ (- l)r

-1 -2r+2}^.
l-# 1 + a; 1-2* l v ' '

" 8(I^j-3(I^) + (r^y- !{9r+8+(-l)'2~}V.

"• 4lI^) +
4(l

1
^p

;4M
(
12 + llr

)
a:'-

18
- Tfx + (TT^-2T3i' (-V (+•-£?)*31 — 3a; 1- 3 —

19
' 2la^I)

+
2(rT^)

;?' eVen'2 {{
- 1)2 - 3}a;r;r0dd

' -h 1 + {
- 1)2 }XT

'

2 3 2

(l-sc) d (l-x) 2 1-sc

j
^r+2 *"

-+2 c^"2
)

*

j (a - b) (a - c)
+

(6 - c) (6^o)
+
(c-a)(c-b) 1

X '

5 2 1 2 ( 5r + 9)
22

' -(2^p-2^ + (I^-)2 + r^; f+»-W *
23 11)

1
!

* *
1

f9\ _JL J_l_ 1 1

(1-a) 2 \l+ anx l + aP+tx 1 + x 1 + ax)
'

1 1 ( x x* xn+l
25 <

.-r(l-a•)(l-.'c2)• * (l-.r)2 (l-3 l-^ i_ xn+i

XXIV. Page 272.

*' (TT 2̂5 (4r+1)^ 2 -

l + x-2x* > {
1 +(- 1

)
r2r^r

-

3 - 12* + Use2
1

5
' l=^flE?r®5^+ tr-+ 1)"r- 6 ' 3- + 2n-l;-(3«-l) + 2n-l.

7. (2. 3-1-3. 2-1)^-1- 2(1-3^") 3(1-2^*)
' 1-3* 1-2* *

v ;
' l-4x 1-Sx
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, l-.r» l-3».r" l-2' l
.r"

11. ?/n -3»n_ 1
+ 3»u_o-j/ n_3=:0; M»-4«n_1+6Mw_a -4tito_a+«»_4=0.

12. Sn=5aD -S, where 2 = smn to infinity beginning with (n + l) th term.

This may easily be shewn to agree with the result in Art. 325.

13. (2n+ 1)3+| (2**+i+l).

XXV. a. Pages 277, 278.

2 13 15 28 323 074
L

1' 6' 7 ' 13' 150' 313*

12 7 9 43 95 JU3
2

' 2' 5' f7' 22' 105' 232' 1497'

3 10 13 36 85 121 1174
1

' 3 ' T ' 11 ' 26 ' 37 ' "359
'

1 1 1 1 1 1117
*• +

2 + 2 + 2+ 1 + 1 + 2 + 2 ' 12

"

1 1 1 1 1 157
* D +

4+ 3+ 2+ 1+ 3
; "30"

'

JL _L JL JL J_ JL *• ^
3+ 3+ 3+ 3+ 3+ 3+3' 109"

_1_JLJ^JL_! Ill 11
7

' 3T 5+ IT 1+ 3+~ 2+ 1+ 5
; 35"

J__l_ J_ J_ _1_1. _7 J_J^AJl_ X
?5i

2+ 1+ 2+ 2+ 1+ 3
; 19"

1 + 7+ 5+ 6+ 1+ 3
5 223'

6.

10.
11111111 G3

3+ 3+ 3+ 6+ 1+ 2+ 1+ 10' 208*

J__l_l 259 1 7 8 39 47n
'

4 +
3+ o+ 3' GO* i' 29' 33' 161' 194*

16. n - 1 + 7 r-— , jt = ; and the first three convergents are
(n + l) + (n-l)+ 7i + l

// - 1 n2
?j
3 - n2 + n - 1

~T~' n+~l' ~n*~
"'

XXV. b. Packs 281—283.

1 j 1 151
and

4.

(203)
2 * "2(1250)** " 115'11 11 a*+3a+3

a+ (« + !)+ (a +2) + a + 3' aa + 3a- + la + 2
'



542 HIGHER ALGEBRA.

XXVI. Pages 290, 291.

1. a=7m + 100, 2/= 775f + 109; a=100, y= 109.

2. x= 519t-73, ?/= 455t-64; a=446, y= S91.

3. x = 3934 + 320, ?/= 436t + 355; x=320, ?/ = 355.

5 4
4. Four. 5. Seven. 6. -, -.

^3117 \ L ^ 1_
12' 8*' 12' 8

; °
r

8' 12
; 8' 12*

8. £6. 13s. 9. x= 9, y = S, z = S. 10. x= 5, y = 6, 2= 7.

11. x= 4, y=2, z= l. 12. as=2, ?/ = 9, s=7.

13. <c= 3, 7, 2, 6, 1; y = ll, 4, 8, 1, 5; 2= 1, 1, 2, 2, 3.

14. aj=l, 3, 2; y = 5, 1, 3; z = 2, 4, 3.

15. 280« + 93. 16. 181,412.

17. Denary 248, Septenary 503, Nonary 305.

18. a=ll, 10,9, 8, 6,4, 3; 6= 66, 30, 18, 12, 6,3, 2. v

19. The 107th and 104 th divisions, reckoning from either end.

20. 50, 41, 35 times, excluding the first time.

21. 425. 22. 899. 23. 1829 and 1363.

XXVII. a. Pages 294, 295.

1 1 26 „ 1 2889

1+2+ ••"15* n 4+"" , 1292"
"

1 1 485 1 1 99
3

'
J + 2T4T'- ;

198
4

-

2 + IT4+ - ; 35"

11 3970 J. J_ 1 1 J_ 119
5

-

d +3+"6+" ; 1197

'

6
'

+
1+ 1+ 1+ 1+ 6+"- ;

331111 116
7. 3-f

1+ 2+ 1+ 6+
""'

31

_L J_ JL J_ JL J_ .

197
+ 1+ 2+ 4+ 2+ 1+ 8+

"'•'
42

*

_1_ J_ 1351 JL_ J_ JL 1_ 198
9

-

d + 2+ 6+ '•• ; "390"' 1+ 1+ 1+ 10+
- ;

35
*

111111 161
11. 6

12. 12 +

1
13.

1+ 2+ 2+ 2+ 1+ 12+ ' 2111111111 253

1+ 1+ 1+ 5+ 1+ 1+ 1+ 24+ ' 20
'

111111 12

4+ 1+ 1+ 2+ 1+ 1+ 8+ "" 55*

_1_ Jj_ J_ _1 1_ .
47_ _1 1_ >

5291
' 5+ 1+ 2+ 1+ 10+

'"•' 270' 10+ 2+ '"' 4830*1111111111 280
ie .±D

' 1+ 3+ 1+ 16+ 1+ 3+ 2+ 3+ 1+ 16+ '•' 351*
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4030 1(577 1 I 1

9
' 401

* 20
- 483

* 21,
2 + 2+2 +

""

(
1111 111

22. 4 + r— — -— —- ... 23. 1 +—
1+ 1+ 1+ 4+

'

2 + 3+ 1+ "

„„ a
1 ! 11111

24
'

4+3+3T- ; rT2+8+3+3+- •

25
' ^

26. Positive root of x- + 3« -3= 0. 27. Positive root of 3x2 - lOx -4 = 0.

28. 4^/2. 30. -.
a

1. a +

XXVII. b. Pages 301, 302.

1 1 1 8a4 + 8a2 + l

2a + 2a+ 2a+
""'

8a :, + 4a

J. 1_ 1 1 8a2 -8a + l
2

* * + 2T 2(a-l)T 2+ 2(a-l)+ *
,;

8a-4
, 1 1 1 1 2a- -1

3. a-l + .

4. 1 + -

6. a +

1+ 2(a-l)+ 1+ 2(a-l)+ "' 2a1111 8a2 + 8a + l

2a+ 2+ 2a + 2+
"'

' 8a2 + 4a '1111 2a262 + 4a& + l

6. a-l-t

7.

b+ 2a + b + 2a +
'

2a&*+26 '1111 2a/i-l

1+ 2(n-l) + 1+ 2(a-l)+ "" '
"

2/i

432a5+ 180a3 + 15a

141a4 + 36a2+1

XXVIII. Page 311.

l. s=7 or 1, 2/ = 4; s=7 or 5, y=6. 2. #= 2, y = l.

3. x=3, y=l, 11; *=7, y=9, 19j x = 10, y= 18, 22.

4. x=2, 3, 6, 11; y=12, 7, 4,3. 5. x = 3, 2; y=l, 4.

6. x = 79, 27, 17, 13, 11, 9; y=157, 61, 29, 19, 13, 3.

7. x= 15, ?/ = 4. 8. x= 170, y = 39.

9. x=32, y=5. 10. x = lG4, y = 21. 11. x=4, y = l.

12. 2.r = (2+ x/3)
n +(2- v/3)»; 2V'3 . y = {2 + s/3)

n - (2 - v/3)»; /t being any
integer.

13. 2x= (2 + v/5)
n +(2-^/5)' 1

; 2^/5 . ^ = (2 + ^5)"- (2 - v/5)»; n being uny
even positive integer.

14. 2x = (4 + v/17)
n +(4- v/17)

n
; 2 V/17. ?/ = (4 + x/17)» - (4 - v/17)»; n being

any odd positive integer.

The form of the answers to 15—17, 19, 20 will vary according to the

mode of factorising the two sides of the equation.
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15. x = 11fi - 3/t2
, y = m? - 2mn. 16. x = - m2 + 2mn + n~; y =m2 - ?i

2
.

17. x=2mn, y= 5m?-n*. 18. 53, 52; 19, 16; 13, 8; 11, 4.

19. m--n-\ 2mn; m2 + w2
. 20. m2-n2

j 2mn + n'2 .

21. Hendriek, Anna ; Claas, Catriin; Cornelius, Geertruij.

XXIX. a. Pages 321, 322.

1
1. ^n(n + l)(n + 2)(ti + S). 2. - n (n+ 1) (n +2) (« + 3) (/t + 4).

3. — (3>i - 2) (3n + 1) (3/i + 4) (3n + 7) +^ = ~ {21n* + 90/i2 + 45u - 50)

.

71 11

4. -(n + l)(n + 6)(/i + 7). 5. -(n + l)(n + 8)(n+9).

fc
n , n 1

6. ; 1. 7.
n+1' ' 3;i+l' 3*

o
1 l l « 1 1

8. t^ - t-t^ =^^ ^r ; ,~. 9. ^T -
12 4(2/1 + 1) (2/7 + 3)' 12" ' 24 6(3/i + l) (3// + 4) ' 24*

5 2/1 + 5 5 11 2 1

'4 2 (7i + l) (?? + 2)
5 4* 6 h + 3

+
(u + 3)(h + 4)

; 6*

12
' S-nT2 +

a(n + l)(i» + 2)
;

i' ^ j^+l><« + >H« + «>(* + «>'

1 n
14. -?i2 (n2 -l). 15. j (»-l)(w + l)(n + 2)(2n+l).

16. — (n + 1) (n + 2) (3/r + 36n2 + 151n+ 240) - 32.

1?
(n-l)«(n+l)(n+2)

ig
»(n+l)(n+2) n

6(2n+l) 3 n+1"
n(/t + 3) ,

3 2 1 1
19, ~^~ + 2~^2~ (n+l)(n + Z)'

20
-

H + 1
-7l+~r

XXIX. b. Pages 332, 333.

1. 3»2 + 7i; ?i(7i + l) 2 . 2. 5/t2 + 3/7; - n (n + 1) (5/7 + 7).
o

3. 7t
2

(/i + l); — «(n+l)(n+2)(3n+l).

4. -4raa (n-3); -77 (/7+1) (n2 - 3u - 2).

5. rc(»+l)(n+2)(n+4); ^n(n+l) (n+2)(n+3)(4»+21).

l + .r
2 l-a; + 6.x-

2 -2.r3 2-.r + .r
2

(l-.r) 3
* 7 -

(l-a;)3
* 8

- (I-*; 3 '

_ 1-aJ 1+ lLc+ lla^+g3 9

(1+.t)- (l-z) 4

12. gj. 13. 3.2» + /7 + 2; 6(2"-l) +
W ^ + 5

^
.
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14. n«-(n+l)s
; ^(Sn»+2n*-15n-26). 15. S*-i+ n;

3*+ n~+" ]

16. 2»+>-ns -2tt; 2»+2 -4- t»(u+1)(2«+7).

17. 3--1 + 1
n (n +g)

. 1
(3

„+1 _
8) +

»(» + l)(. + 5) _ „

18.
1 - xn nx 11

20.

22.

(1 - a;)
2 1 - x

1 1

24.

n+1 ' 2 n
'

n (n + 1) (3k3 + 27k2 + 58n + 2)

15

k(k + 1)(9h 2 + 13k + 8)

12

26. 1-
2»t+i

|k + 2'

28. (n-l)3»+1+3.

n
30.

n + 1
2».

1 n + 1
32>

2""^T2

19.
1 - xn >i.r

n
)i (n + 1) xn

(1 - xf
" (1-*)" " 2(1 -a?)

n - 1 4n+1 2
21

' 7TT2-~^~
+

3

23.
n (k + 1) (12k3 + 33na + 37n + 8)

60

1 1
25. - - -

2 2'1.3.5.7 (2k + 1)'

27. (k2 -k + 4)2"-4.

29
* 1-3-5 (2/t+l

)

2 2.4.6 (2k + 2)"

31.
J l J

33. 1-

4 2(k+1)(k + 2)
*3"'

k + 4 1

(K + l)(K+2) ' 2n+1
'

XXIX. c. Pages 338—340.

1. - (e
x - e~x) - x.

(e
x - c~x

5. (l + x)ex .

8. k(2«-1).

11. log< 2-£,

ieix + ie~ ix
).

2.

4.

6
{p + q)

r

II

9. 0.

12. 3(<3-l).

1+ —-log(l-ar).

1

(r-2)|r-T

7. 1.

10. 4.

13. e*-log(l + .r).

n6
?i
5 n3... ?l' 71° ?f 71* K

14
' <

X
> 7

+
2
+ 2--6 + 42'

n8
?i
7 7kb 7k 4 ir

12 24
+

12(J)

15. lot'. 17. (1) n+ 1.

x 2 \ 1 + k + n 2
J

v
' k +

1

20.
(1 +

-' )2
lo-a+.T)-

3^. 21. »(n-fl)2»~».
4.r

22
- W 3

I

1

+

2»+i + (-!)«+'}• <-) 5l2
+ (_1)

(n+l)(n+2)/'

H. H. A. 35
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XXX. a. Pages 348, 349.

1. 3, G, 15, 42. 2. 1617, 180, 1859. 6. 18.

7. 23. 33. 8987.

:. b. Pages 356—358.

20. x = 139t + (jl, where t is an integer.

XXXI. a. Pages 367—369.

2. 1 h — - . 18. 1 ; it can be shewn that qn=l +j> n -

XXXII. a. Pages 376, 377.

5. 2 to 3.

2197
10.

16.

20825

'

11

2.
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11. A £5; B £11.

MX 250 ... 276
14. (1)

7770
; (2)-w

12.
20

27

15. 4a". 16.

13. I,
1

,
shillings.

17. 31+ in.

2

XXXII. d. Pages 309, 400.

1.
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26. The determinant is equal to

27. u w' v' =0.

w v

v' v!

w
10

a?
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XXXIV. c. Pages 449, 450.

1. x3 + xy2 + ay- = 0.

4. y- = a(x-Sa).

7. 64e4 + c4a4 + a464= cf-b-c-J2 .

9. a4 -4</c3 + 364= 0.abed
2. z + rt = 0.

5. a*-a*=l.

3. aB
3+y»=o*

6. ««+ys=2as.

8. ?/-- loa;=fc2 (a:+a)".

10. «4 -2a2&2 -&4 + 2c4= 0.

11. + -3=1. 12. 5a263= 6c5
.

1 + d

14. a3 + 63 + c3 +abc = 0.

16. a° + b2 + c2 ±2abc = l.

l + a 1 + 6 1 + c 1+<Z

13. ab = l + c.

15. (a+6)*-(a-5)$=4c$.

17. abc = (i- a-b - c)2 .

20. c 2 (o + b - 1)- - c {a+ b - 1) (a- - 2a6 + &2 - a - b) + ab = 0.

1 1 1

18. «2 -4a&c + ac3 + 463 -&V = 0.

22

23.

x i + +
(a -b)cr+(a- c) bq (b - c) ap + (b - a) cr (c - a) bq + (c - b) ap

1

bcqr + carp + abpq

ab' - a'b ac' - a'c ad' - a'd

ac' - a'c ad' - a'd + be' - b'c bd! - b'd

ad' - a'd bd' - b'd cd' - c'd

= 0.

XXXV. a. Pages 456, 457.

1. 6x4 -13x3 -12x2 + 39.r-18 = 0. 2. x* + 2xri - lis*- 12.r3 + 3Gx2= 0.

3. x6 - ox* - 8x4 + 40x3 + 1 G.r2 - 80r = 0.

4. re
4 - 2 (a2 + b2

) x2 + {a2 - b2 )
2

. 5. 1,3, 5, 7.

1 l
p

2' 2'
~°-

_3 3 1

2' 4'
3"

113
V 2' 4*

6.
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9. s4 - 10^+ 1=0. 10. re
4 - 10a;3 -19.r2 + 480a; -1392 = 0.

11. ar» - 6a;
3 + 18x2 - 26a;+ 21 = 0. 12. a;

8 - 1 6.r6 + 88a;4 +192.t2 + 144 = 0.

13. One positive, one negative, two imaginary. [Compare Art. 554.]

15. One positive, one negative, at least four imaginary. [Compare Art. 554.]

16. Six. 17. (1) pq= r; (2) ph'=q*. 20. q
2 -2pr.

21. pq-r. 22. ^-3. 23. pq-Sr,

24. pr-ls. 25. pi -4p2
q + 2q 2+ 4:pr-4LS.

XXXV. c. Pages 470, 471.

1. a,-
4 -6a;3+ 15a:2 -12a; + l. 2. a:

4 - 37a;2 - 123a: - 110.

3. 2a;4 + 8a;3 -a;2 -8a; -20. 4. a;
4 -24a;2 -l.

5. 16aa;7i (.r
6 + 7a;

4
/*
2 + 7a;

2
/t
4 + h6

) + 2bh (5.T4 + 10.r2/r + 7i
4
) + 2ch.

10. 2, 2, - 1, - 3. 11. 1, 1, 1, 3. 12. 3, 3, 3, 2, 2.

1 = ^/^3 1±J~Z 1 1 1
13.-2,

2 , 2
14. ^ > 2 ' 2

'

15. 1, 1, 1, -1, -1, 2. 16. ± x/3, i^/3, 1 = ^/^1.

/3 l±J-7 /3 l±,7r23
17. a, a, -a, 6. 18. ^Wg'" 2— ;± \/2' 4

19. 0, 1, -|, -| ; 0, 1, -|, -|. 20. n"j*-*= 4p»{n-2)»-*.

22. (1) -2; (2) -1. 27. 5. 28. 99,795.

XXXV. d. Pages 478, 479.

2. ?/
4 -5?/3 + Sy'2 -9y +27=0.

4. 3 ±2^/2, 2 = ^/3.

6- 2,2l,L(l±Jl3).

1.
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XXXV. e. Pages 488, 489.

1. 5, d*±£Lll. 2 - 10,-5±7V^8, 3. 4, -2±5j~^S.
a

4. -6, 3±4 7^~3. 5. --.-iVJ?. 6. 11,11,7.

10. 4, -2, -ld=7^1. U. * 1,-4*^/6. 12. 1,2,-2,-3.

13. 1±72, -1±7^1. 14. 1, -3,2±75.

15. 2,2,|, |. 16. 1, 4 ±715, -
3-^.

17. -4, -4, -4, 3. 18. g»+8r*=0;?, I-
3-^-5

22. -2±76, ±72, 2 ±72. 23. sV + 2s(l-*) 2
?/
2+ r(l-s) 3

j/ + (l-44 = 0.

25. 2±73. 26. °—^?.

28. .t
4 - 8.r3 + 21a;3 - 20a; + 5= (x2 - 5x + 5) (a;

2 - 3a; + 1) ; on putting x = 4 - y,
the expressions a;

2 - 5a; + 5 and a;- - 3a; + 1 become y
2 - 3// + 1 and

y
2 - 5// + 5 respectively, so that we merely reproduce the original equation.

MISCELLANEOUS EXAMPLES. Pages 490—524.

2. 6, 8. 3. Eight.

4. (1) 1±75; 1±275.

(2) 35=1, y = S, z= - 5 ; or x= - 1, y= - 3; 2 = 5.

a + 2b 1
6. (1) 1, - q -, . (2) 3. 7. First term 1 ; common difference - .

8. ^-3; -pCp
8-^); (p

2 -q)(p°-3q).

9. -(oft + a-^" 1
). 10. ^. 13. A, 7 minutes; ZJ, 8 minutes.

14 . a4 + &4 + c4= 62c2 + c
2a2 + a262<

15. x-= y
1= :

; or = ,-=£;J a + b + c c-a a-b
where Jc-a (a- + b- + c2 - be -ca- ab) = d.

16. One mile per hour.

17. (1) {b+e)(e+a){a+b). (2) ^/-g- +^ "

'

2
~. 18. ^ ;

22G8.

13. (1)^ 105

(2)x=y=±7^; a^6= -(J+26)
=±

\/y+a6-a«-

22. 1«*5; nine. 23. i {(1 + 2 + 3+ .. . + /<)-- (l 2 + 2-* + 32 + ... +n-)\.
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24. Wages 15s.; loaf 6d. 25. 6, 10, 14, 18.

29. x= 3fc, ?/ = 4fc, z = 5fc; where F= l, so that fc=l, w, or or. 30. 480.

31. Either 33 half-crowns, 19 shillings, 8 fourpenny pieces;

or 37 half-crowns, 6 shillings, 17 fourpenny pieces.

32. a = 6, ft = 7. 33. 40 minutes.

35. 1 + x + ^x2 -- x i -— x\

37 .

-l^y-3
^ pr 1^/gj-

1 [a,.4_.r _5 (a;2 + a; + l) = 0.]

38. a=8;^—-. 40. The first term.
.r- 5

l + 4ft
2c2 + 9c2a2 + a2

ft
2

41. 13, 9. 42. .,,.,, , •

' a2
-|- o- + c-

43. (1) 3, - 2, —^^—- . [Add a-
2 + 4 to each side.]

(2) x= l, -|, -1, 0, 0;

ssl, -|, 0, -1, 0;

2=1, -\, 0, 0,-1. 17. 5780.
a

48. 150 persons changed their mind; at first the minority was 250, the

majority 350. 50. 936 men.

„. _ 2m -l - . ad -be
51 - C

1 ) 0, 7J- rrt. (2) .i* '2m +l K
' a-b-c+d

[Put (a - c)(6- d) = {(x - c) - (x - a)} {(x - d) - (x - ft)} ; then square.]

53. 6, --577-. 55. m = -
r
——,-

,
»=-,

—

-^St.30 ^/a + ^/6 v/a + ^/6

58. (1)1. (2) ±4 ^[putting a;
2 - 16 = y

4
, we find y*-16 -4y(?/2 - 4) = 0.]

60. —,—— males; ^——— females. 63. 0, a + b, — .

b-c b-c a+b

64. Common difference of the A. P. is ; common difference of the A.P.
n-1

which is the reciprocal of the H.P. is -=-> — . [The rth term is
ab (n - 1)

a(n-r) + b(r-l) ... ,... , . aft(n-l)—

-

'-—-^ - ; the in - r + l) th term is —-.
e—rr—rv -1n-1 ' a(n-r) + b (r - 1)

68. 19. 69. £78.

l±V-3 -1*^-3
*

U
'

2 ' 2
*

[(a + ft)
3 -a3 -ft3= 3aft(a + ft), and (a- ft)

3 - a3 + 63= -3aft(a - ft).]
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72. (1) .,*]«» *4U (2) *=* 2(^?
l0

S
2)
~*l-189.

v ' log b 1 - log 2

73. 7, 2. 74. 8 hours.

-. ** * !f * a a + 6 + c ...
,

79. (1) -=*f=-=sO, or -
. 2) .<c = y = 2 = l.

v
' a o c a6c

80. a = 3, 6= 1. 81. [Put x-a = u and y - b = v.] 82. ar = 3. 84. 126.

85. Sums invested were £7700 and £3500: the fortune of each was £1100.

86. 503 in scale seven. 91. 25 miles from London.

T _ 5 ! ItthE}. ?/
_ 3

3 25 +10^ /5 !
' *-6

' *» 29
>*>- d

'

5
'

2y '
96

" \/3' "21'

_„ r,
.. , ,. . l + 4x 2(l-2'\r») l-(-l)».r»

100. Generating function is -z -„
., ; suru= -^—=—-- \ '

1-x- 2i- 1 - 2.c 1 + x

nih term= {2" + (
- l) n } xn~K

107. a- + 6 - c- - d. 108. 12 persons, £14. 18s.

109. (1) x = a, y = b, z= c. (2) x = 3, or 1; |f=l, or 3.

111. 1+ JL -=- -i- -L ,— 1; x= 948, y= 492. 113. £12. 15*.1+12+1+1+1+9 *

117. (1) x = a, y = b; x= a, y = 2a\ x = 2b, y = b.

(2) x = 3 or 1, y = 2, 2=1 or 3;

12°- W l~^TW-
(2)

a(J"' 1) +
d

{*»+"-+ **+> - (n+ 1)
2 *2 + (2*« + 2li - 1) x - n-

1

.

121. - . 122. (1) y- or ^- .

(2) x = 0, y = 0, 2= 0; x=±2, y=±l
t
2= ±3.

13.c - 23 lO.r-1
t

r + 4

3 (.r
2 - 3x - 1) 3 (**+*+ 1) ' 2^+1

'

125. 1 = 1; scale of relation is 1 - x - 2x-
;
general term is {

2' 1~ 3 + (- l)n_1 } .r"-'.

127. (1) .r=-6, 2; y = 9, -3. (2) *=-; y=y

128. (1)^". (2)^. 129. 12, 16; or 48, 4.

130. (1) x= ±7.

(2) - = I = - = ±JL where &2 = 262c2 + 2c 2a2+ 2a262 - a4 - 64 - c 4
.

a b c 2abc

124

133. 11, r-1. 134. 384sq.yds. 136. a= ±2, 6= 3, c = ±2.

V2'
y "

v/2

138. £3. 2s. at the first sale and £2. 12*. at the second sale.

137. (1)*=±-^, y=±^. (2) ±^; *^/^-
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139. (1) i«(«+l)(2«+ l). (2) ~n(n + l)(n + 2)(Bn2 + 6n + l).

(3) |n(»+l)(4w-l).

141. (1) x= l or y; ?/ = 3 or y.

(2) x, y, z may have the permutations of the values 3, 5, 7.

142. y
3 + <jy

2 - g
2
y/ - q's - 8r= 0.

x (xn - 1) w
143. (1)

(x-iy x-l'

(3) 2'l+i + -u(/t + 7)-2.

3 + Ua; -157a:2

( ' 1 + 5x -50a;2 -8a;3
'

144. 2 (6
3 - d3

) = 3 (&
2 - c2

)
(b - a).

145. -2, -2, -2, 3*

11,13,15,17,19,21,23,

14,15,16,17,18,19,20,

miles,146. A walks in successive days 1, 3, 5, 7, 9,

B walks 12, 13,

so that B overtakes A in 2 days and passes him on the third day ; A
subsequently gains on B and overtakes him on B's 9th day.

^6-1
5

~ *147.

150.

148. -(a + b + c), -(a + wb + u)
2
c), - (a + (o'

2b + wc).

n (an — bn )

nth term is -* —L a;"
-1

; Sum = A - B,
a-b

, a(l-nanxn) a2x (1 - an
-1 xn

~
i
)where A = —y— '- H *_

1 - ax (1-aa;) 2

sponding function of B.

151. qif - 2p2
y
2 - 5pqy - 2p3 - q

2= 0.

153. (1) -7,
7±8y~ 8

-
(
2
) ^ ±8

>
4 «

and B denotes a corre-

154. 3 days.

156. (1) | , -^ ,

0±
4̂

89
. [(12a; - 1) (12a; - 2) (12s - 3) (12* - 4)= 120.]

„. , ,„„ T92 11 2 "I

157. 22 years nearly. 161. 44 hours.

162. (1) x
_ -7±V217 .-
-=r= r*- ;

s=±i, ±2; y==F2, Tl;ar=-y=±V3

(2) x = h (6
4 + c4 - a262 - a?e2

) , &c. , where 2/i;
2 (a6+ bG + c6 - 3a262c2) = 1

.

[It is easy to shew that a2x + b2
y + c2z= 0, and

a2
y + b2z + c2x = a;

3 + y'i + z'
i - Sxyz= a2z + b2x + c2y .]

163. 2 (a + b + c)x= (be + ca+ ab) ± J (be + ca + ab) 2 - 4abc (a + b+ c).

[Equation reduces to (a + b + c) x2 - (be + ca + ab) x + abc = 0.]

164. (1) ~n(n + l)(n + 2)(Sn + 13). (2) 2e-5.
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166 .
{
l)xJ1+

f*
/2 a,y=

1
£. [Eliminate..]

(2) #, ?/, z are the permutations of the quantities 2, -
., , g

167. (*+y+*)9=3*9
. 168. 2. 169. *»+*»+** -Says.

170 He walks 3| miles, drives 7* miles, rides 10 miles per hour.

AB = 37h £C = 30, CA = 15 miles.

172. (1) a;= 13 or 10, i/ = 10 or 13.

d ia-b) c(.-ft). b(d-c) ,
a(d-c)

M £3200. "6. rr + 3^- + (3,-r)^r-0.

177. 7> = (
ac *M ) fa ±//l

) + (
6c * ad} t? T '?) ''

q = (be T ad) (<?0 ±/>0 - (
ac * bd

) ifif T eh>'

178. .= 6, -5; £ > 2
'

-18±*/^47 14*^/^74
y= 5, -6;

g
. 2

[Put a; - y= M and ay=0, then u2 + 2y = 61 ,
u(61 +v)= 91.]

1 3=^5
182. 8987. 183. ?/

3 - ft»/
2 -aci/ - c

2 = 0. -1, -8, -j, 2

I + n/^3 1-n/£?
186. (1) x, ?/, s are the permutations of the quantities 1, g— -

, 2

a(Z>2 + c
2
) _

187. Conservatives; English 286, Scotch 19, Irish 35, Welsh 11.

Liberals

;

English 173, Scotch 41, Irish 68, Welsh 19.

191, (1) 7, 9, -3. (2) 2±J-3, -2±J-h
a ~ b

. 07, -n J. I.-"—-. 201.
a-ft _ jm+ n-2

192. 2aw=.+6+-yr; 2bn=a+b--gr. 201.
|m _ x )n _x

n 4«+1 + 4(-l) w+ 1

202. 54, -26, 14±840 N/-1. 204. ^, 4„+! _(_!)»

206.
3rw3 +nm2g-3Ti3

207. 81 years nearly.

m3 + nvi2
q + n8

209. 7 Poles, 14 Turks, 15 Greeks, 24 Germans, 20 Italians.

210
1_? _l+^iog(l + a;).J1U

* 2 4 2.c
6 v

'

212. (1) jn(n+l)(n+2)(n+3); W "Ti+iyr ' (3) »•

213.
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223. (l)^= l

(±15±V33)j ,= 1

(±15W^);

or*= 4, 6, -4, -6;
y = 6, 4, -6, -4;
2 = 5, 5, -5, -5.

(2)
a; ~ fl - V~ b _ g-c

a(6-c) 6(C -rt)~c^rT6)- X
'

where (&- c)(C -a)(«- &)x = a2 + 62 + c2 _ &c _ ca _^
226. 12calves, I5pigs, 20 sheep. 229. Lim

f (^-l)} =|; convergent.

230. Scale of relation is 1-12., + 32.- Xtenn = -
1 {«« + 8—

.

2*»-i 23«-i 5
^n = —s H

3
T

7 "21

11
231

- 2T3- 232. ar= ±^ ~ P + ? * N/a=* + 6«- ca, &c .

233. a3 +V+ cS=aZ(b + c) + bZ(c + a) + c*(a + b).
235. (1) (l-*)^=l+4o;+^-.(n+ l)3a.n+(3B8+6|lf_ 4)^I

- (3m3 + 3n2 - 3k + 1)«*M + »%»+«
(2) J 1

' 8 (n + l)2(7i + 2)3-

236. 1 + a*x* + a*x* + fl«x" + ««*!« + a*V» + aux* +„^28 +^ + a20;r,6<

237. 3hours51min. 240 . 2 or -
^

.

242 . _ 140 .

244. 3,4,5,6. 246. a*(c*-Sd?)*=:(ab*+2&) (ab*-£f.
247. 2, 6, 1, 3. 248. ±

.

13

249. (1) 2*-H-2-jU(n + l)(2,t + l).

(2) -_^!L_ _ 2

(n+ l)(n + 3) S'

<
3
> T^ +*££P -he- . U even , If*^ + 'Jiz*^)

when n is odd.

250. (l)*=
2/
= * =0or|. If however X> + y > + z* + yz+zx + xy = 0) then

* + 2/ + * = -a, and the solution is indeterminate.

(2) —, V z
a(-a + b + c) b(a-b + c)-^(^b^c)

1

flM (i
±

s/l- a + *> + cjja -b + c) (a + b~^~c)

'

253. -&+B
E1C,H-A,+B, + c.)<4,- B, + ,)(Alf +£+ XreA = y/a (6 - c), &c.
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256. (1) .>— 1, w, to-
;

z=-(a + b), -(rtw + W), -(i/w'- + /yu).

(2) x= S, or 7
|

2 = 0, or -4

y = 7, or 3 ) m= 4, or -6
257. To at least 3r-2 places. 258. Tea, 2s. Go".; Coffee, 1*. 6d.

262. 2ga -6pr+24». 263. 11 turkeys, 9 geese, 3 ducks.

266. (1) x, y, z have the permutations of the values

a, la(b-l+sJb*-2b-3), \ a (b - 1 - JJfi^W^ 3).

(i j_ b -f- c
(2) as=f/=«= l; # = =— ; &c. 267. 0.

268. 16 Clergymen of average age 45 years
;

24 Doctors of average age 35 years

;

20 Lawyers of average age 30 years.

269. (a a2
- afl (a.

2
a4

- a
3
2
) = (afy - a

2
2
)

2
;

or a a.
2
a i + 2a

x
a.
2
a
3
- a a 3

2 - afaA - a
2
3 = 0.

270. X= ± : —
, &C. u = ± -—

T
&c 273. c~$.

Va2 + 62 + c2 V«2 + ^2 + c2

274. (1) fl-?Viog(l-a;)-2. (2) -^ jl-
# , w '^— , jv '\ xj a-1 ( (a + l)(a+ 2)...(a + n))

275. (1) *=?, ?, 2;

?/=-l, -g, -1;

3 3
2

' 4' 4'

(2) z=±4, 2/= ±5, t<=±2, w=±l.

5

Vi> ^ t2 v!' u= 4v-3' u=± \^-
276. a2 + ft

2 + c 2 + d2 + \. 277. -p
1
8 + 3^0- Bp3 .

279. ^, 6 birds; B, 4 birds. 281. 2.

287. a, -5a, -5a. 289. S1= - ft"? ^'fl'-fr"?? , &*

291. .4 worked 45 days ; i>, 24 days; C, 10 days.

294. (ft
2 + c2 - a2

) (a 2 - ft
2 + c

2
)
(a2 + ft- - c

2
).

300. Walked 3 miles, worked 4 hours a day

;

or walked 4 miles, worked 3 hours a day.

*=±
3

CAMBRIDGE : PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY TRESS.
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